CO₂ – By the Numbers

Snow's Library Adult Education Program Part 1 November 2, 2016

Pete Baldwin pete_baldwin@base-e.net 617-306-7419

Without data you're just another person with an opinion. W. Edwards Deming

Today, we debate philosophical positions.....supported by anecdotes.

Energy Policy = Choice of Fuel(s)

Basic Comparisons

	China	USA	India	Japan	Germany	Russia
Population - July 2015 est	1,367,485,388	321,368,864	1,251,695,584	126,919,659	80,854,408	142,423,773
Population Growth Rate	0.45%	0.78%	1.22%	-0.16%	-0.17%	-0.04%
Area - km²	9,596,960	9,826,675	3,287,263	377,915	357,022	17,098,242
GDP - Purchasing Power Parity (\$trillion)	19.4	17.6	8.0	4.8	3.8	3.7
Installed Generating Capacity GW	1,505	1,063	255	293	177	242
% of World at 5,291 GW	28%	20%	5%	6%	3%	5%
Electric Production TWh	5,650	4,048	1,052	966	585	1,064
Electric Consumption TWh	5,523	3,832	865	921	540	1,065
Aggregate Load Factor	42.9%	43.5%	47.1%	37.6%	37.7%	50.2%
Natural Gas Production - BCM	121.5	782.2	31.7	4.7	10.1	578.7
Natural Gas Consumption - BCM	180.4	759.4	50.6	134.3	77.5	409.2
Refined Petroleum Products Production - mmbbl/d	9.9	19.1	4.4	3.3	2.2	6.1
Refined Petroleum Products Consumption - mmbbl/d	10.5	19.0	3.7	4.3	2.4	2.8
Coal Production - Million Tonnes Oil Equivalent	1827.0	455.2	283.9	0.7	42.9	184.5
Coal Consumption - Million Tonnes Oil Equivalent	1920.4	396.3	407.2	119.4	78.3	88.7

Source: CIA World Factbook

World Total Installed Electrical Generating Capacity 5,291 GW

"Practical Strategies for Emerging Energy Technologies"

base

Ps.....Total Value of Outstanding Student Loans - \$1.3 trillion U.S. health care cost 2014 - \$3.0 trillion

OECD Member Countries -2010

World Energy Consumption Mtoe

13,147.3 Mtoe = 521.3Quads

		Natural		Nuclear	Hydro	Renew -		Percent of		
Villion tonnes oil equivalent	Oil	Gas	Coal	Energy	electric	ables	Total	2015 Total	[
	054.0	740.0		100.0				47.00/	U.S.	
	851.6	/13.6	396.3	189.9	57.4	/1./	2280.6	17.3%	2.00/ D	. 1. 1
Canada	100.3	92.2	19.8	23.6	86.7	7.3	329.9	2.5%	- 3.0% Kenewa	able
Mexico	84.3	74.9	12.8	2.6	6.8	3.5	185.0	1.4%	– 2.5% Hydro	
Total North America	1036.3	880.7	429.0	216.1	150.9	82.6	2795.5	21.3%		
Brazil	137 3	36.8	17 /	33	81 7	16.3	202.8	2.2%		
Total S & Cent America	322 7	157 3	37.4	5.0	152 9	24.2	600 3	5 3%		
Total 6. & Cent. America	522.1	137.5	57.1	5.0	152.5	27.2	033.5	0.0%		
France	76.1	35.1	8.7	99.0	12.2	7.9	239.0	1.8%	D	
Germany	110.2	67.2	78.3	20.7	4.4	40.0	320.6	2.4%	Kenewables	
talv	59.3	55.3	12.4	-	9.9	14.7	151.7	1.2%	– Germany 12.	5%
Russian Federation	143.0	352.3	88.7	44.2	38.5	0.1	666.8	5.1%	_ Snain 11 5%	
Spain	60.5	24.8	14.4	12.9	6.3	15.4	134.4	1.0%	- Spain 11.5 /0	
Turkev	38.8	39.2	34.4	-	15.1	3.8	131.3	1.0%		
Ukraine	8.4	25.9	29.2	19.8	1.4	0.3	85.1	0.6%	Nuclean	
United Kinadom	71.6	61.4	23.4	15.9	1.4	17.4	191.2	1.5%	Nuclear	
Total Europe & Eurasia	862.2	903.1	467.9	264.0	194.4	142.8	2834.4	21.6%	– France 41.4 %	6
-									·	
ran	88.9	172.1	1.2	0.8	4.1	0.1	267.2	2.0%		
Saudi Arabia	168.1	95.8	0.1	-	-	۸	264.0	2.0%		
Other Middle East	83.3	45.4	0.8	-	1.8	0.1	131.4	1.0%		
Total Middle East	425.7	441.2	10.5	0.8	5.9	0.5	884.7	6.7%		
South Africa	31.1	4.5	85.0	2.4	0.2	1.0	124.2	0.9%		
Other Africa	93.5	39.2	11.0	-	23.8	2.4	169.9	1.3%		
Total Africa	183.0	121.9	96.9	2.4	27.0	3.8	435.0	3.3%	[T
Australia	46.2	20.0	16.6		2.1	4.5	121 4	1.0%	Asia Pacific	
China	550.7	177.6	1020 /	- 38 6	25/ 0	4.0 62 7	3014 0	22 00/	Ronrosonts	
India	105 5	177.0	1920.4 A07 2	0.00 8 R	204.9	15 5	700 5	5 20/	Represents	
Indonesia	73.5	35.8	80.3	- 0.0	3.6	24	195.6	1.5%	72.9% of	
lanan	189.6	102.0	119.4	10	21 9	2. 4 14 5	448 5	3.4%	Coal	
South Korea	113.0	30 2	84.5	37 3	07	1.6	276 0	0. 4 70 2.1%	Comment	
Total Asia Pacific	1501.4	631.0	2798.5	94.9	361.9	110.9	5498.5	41.8%	Consumption	
	100114	00110	210010	0.110	00110		0.00.0	11.070		-
Total World	4331.3	3135. <u>2</u>	3839. <u>9</u>	583 <u>.1</u>	892 <u>.9</u>	364. <u>9</u>	13147.3	100.0%		
	22.00/	22.00/	20.20/	4 40/	0.00/	2.000	400.004			

"Practical Strategies for Emerging Energy Technologies"

base

53.0% Gas & Coal

2.8% Renewables

World Total Primary Energy Consumption - Quads

world total pr	inary	energy (Q	uadrillio	n Btu)	region,	Referen	Le Lase		
Region/Country	2008	2011	2015	2020	2025	2030	2035	Growth Rate (2008-2035)	
OECD									
OECD Americas	122.9	121.3	126.1	131	135.9	141.6	147.7	0.70%	USA ~ 100
United States	100.1	98.3	102	104.9	108	111	114.2	0.50%	Quade
Canada	14.3	14.3	14.6	15.7	16.4	17.6	18.8	1.00%	Quaus
Mexico/Chile	8.5	8.7	9.5	10.4	11.5	13	14.7	2.10%	
OECD Europe	82.2	80.8	83.6	86.9	89.7	91.8	93.8	0.50%	
OECD Asia	39.2	38.7	40.7	42.7	44.2	45.4	46.7	0.70%	
Japan	22.4	21.2	22.2	23.2	23.7	23.7	23.8	0.20%	
South Korea	10	10.4	11.1	11.6	12.4	13.1	13.9	1.20%	
Australia/New Zealand	6.8	7.1	7.4	7.8	8.1	8.5	8.9	1.00%	
Total OECD	244.3	240.7	250.4	260.6	269.8	278.7	288.2	0.60%	
Non-OECD									
Non-OECD Europe and Eurasia	50.5	49.7	51.4	52.3	54	56	58.4	0.50%	
Russia	30.6	30.2	31.1	31.3	32.3	33.7	35.5	0.60%	
Other	19.9	19.5	20.4	21	21.7	22.3	22.9	0.50%	
Non-OECD Asia	137.9	163.6	188.1	215	246.4	274.3	298.8	2.90%	Note ~3%
China	86.2	107	124.2	140.6	160.9	177.9	191.4	3.00%	
India	21.1	24.4	27.8	33.1	38.9	44.3	49.2	3.20%	Growth
Other	30.7	32.2	36.2	41.3	46.7	52.1	58.2	2.40%	Rate
Middle East	25.6	28.4	31	33.9	37.3	41.3	45.3	2.10%	
Africa	18.8	20	21.5	23.6	25.9	28.5	31.4	1.90%	
Central and South America	27.7	28.7	31	34.2	38	42.6	47.8	2.00%	
Brazil	12.7	13.8	15.5	17.3	19.9	23.2	26.9	2.80%	
Other	15	14.9	15.6	16.9	18.1	19.5	20.8	1.20%	
Total Non-OECD	260.5	290.4	323.1	358.9	401.7	442.8	481.6	2.30%	Overall
Total World	504.7	531.2	573.5	619.5	671.5	721.5	769.8	1.60%	1.6%
									Growth
									Rate

"Practical Strategies for Emerging Energy Technologies"

base,

U.S. Energy Flow – 97.5 Quads

Where Does CO₂ Come From?

CO₂ Equivalent Emissions – by Gas 1990-2013

Figure ES-1: U.S. Greenhouse Gas Emissions by Gas

Note: Emissions values are presented in CO2 equivalent mass units using IPCC AR4 GWP values.

EPA U.S GHG Emissions

"Practical Strategies for Emerging Energy Technologies"

base

CO₂ Emission from Electric Power

Fuel	1990	1995	2000	2003	2004	2005	2006	2007	2008	2009
Petroleum									*****	
Residual fuel oil	91.6	44.6	68.6	68.5	69.3	69.1	28.4	31.3	18.9	14.3
Distillate fuel oil	7.1	7.9	12.8	11.8	8.1	8.4	5.4	6.5	5.3	5.1
Petroleum coke	3.1	8.2	10.1	17.8	22.7	24.9	21.8	17.5	15.7	14.2
Petroleum subtotal	101.8	60.7	91.5	98.1	100.1	102.3	55.6	55.3	40.0	33.6
Coal	1,547.6	1,660.7	1,927.4	1,931.0	1,943.1	1,983.8	1,953.7	1,987.3	1,959.4	1,742.2
Natural gas	175.5	228.2	280.9	278.3	296.8	319.1	338.2	371.7	362.3	372.6
Municipal solid waste ^a	5.8	10.0	10.1	11.4	11.2	11.2	11.5	11.3	11.0	11.6
Geothermal	0.4	0.3	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Total	1,831.0	1,960.1	2,310.2	2,319.2	2,351.5	2,416.9	2,359.5	2,425.9	2,373.7	2,160.3

2,302.9 (2.3Gt) total in 2005

^aEmissions from nonbiogenic sources, including fuels derived from recycled tires.

Notes: Emissions for total fuel consumption are allocated to end-use sectors in proportion to electricity sales. Totals may not equal sum of components

due to independent rounding.

"Practical Strategies for Emerging Energy Technologies"

2005 @ 2416 Mt (2.416 Gt) is benchmark for CPP(until EPA changes it again)

EPA Clean Power Plan - 2015

"32% reduction in 2005 power plant CO₂ emissions by 2030"

What does that really mean? It's time for those pesky numbers again!

World Energy Consumption - Quads

Non-OECD nations drive the increase in total energy use

10

world energy consumption quadrillion Btu

eia

Adam Sieminski, Center for Strategic and International Studies May 11, 2016

Fuel Mix 2040

Renewables, natural gas, and coal all contribute roughly the same amount of global net electricity generation in 2040

world net electricity generation by source trillion kilowatthours

27

Source: EIA, International Energy Outlook 2016

 Adam Sieminski, Center for Strategic and International Studies

 May 11, 2016

Non-OECD Asia Accounts for 55% of Increase

Non-OECD Asia accounts for 55% of the world increase in energy use

11

world energy consumption

Source: EIA, International Energy Outlook 2016

eia Adam Sieminski, Center for Strategic and International Studies May 11, 2016

Projected CO2e Decline to 52.9 kg/mmBtu in 2040

Projected carbon intensity of energy use (CO2/E) declines through 2040 in both OECD and non-OECD; non-OECD CO2/E rose over 2000–12

carbon intensity of energy consumption, 1990-2040 kilograms CO2 per million Btu

Electric Power Generation Growth Rate

GDP drives electricity demand growth, but the electricity growth rate compared to the GDP growth rate becomes smaller over time

world GDP and net electricity generation percent growth (rolling average of 3-year periods)

Source: EIA, International Energy Outlook 2016

Energy Related CO2 Emissions

Coal remains the world's largest source of energy-related CO2 emissions, but by 2040 its share declines to 38%

world energy-related carbon dioxide emissions billion metric tons (Gt)

Key Findings IEO2016 Reference Case

- World energy consumption increases from 549 quadrillion Btu in 2012 to 629 quadrillion Btu in 2020 and then to 815 quadrillion Btu in 2040, a 48% increase (1.4%/year). Non-OECD Asia (including China and India) account for more than half of the increase.
- The industrial sector continues to account for the largest share of delivered energy consumption; the world industrial sector still consumes over half of global delivered energy in 2040.
- Renewable energy is the world's fastest-growing energy source, increasing by 2.6%/year; nuclear energy grows by 2.3%/year, from 4% of the global total in 2012 to 6% in 2040.
- Fossil fuels continue to supply more than three-fourths of world energy use in 2040.
- Among the fossil fuels, natural gas grows the fastest. Coal use plateaus in the mid-term as China shifts from energy-intensive industries to services and worldwide policies to limit coal use intensify. By 2030, natural gas surpasses coal as the world's second largest energy source.
- In 2012, coal provided 40% of the world's total net electricity generation. By 2040, coal, natural gas, and renewable energy sources provide roughly equal shares (28-29%) of world generation.
- With current policies and regulations, worldwide energy-related carbon dioxide emissions rise from about 32 billion metric tons in 2012 to 36 billion metric tons in 2020 and then to 43 billion metric tons in 2040, a 34% increase.

Cia Adam Sieminski, Center for Strategic and International Studie. May 11, 2016 3

Renewables grow fastest, coal use plateaus, natural gas surpasses coal by 2030, and oil maintains its leading share

Source: EIA, International Energy Outlook 2016 and EIA, Analysis of the Impacts of the Clean Power Plan (May 2015)

eia Adam Sieminski, Center for Strategic and International Studies May 11, 2016	7
base _e	2015 = 521.3 Quads

World Energy Consumption IEA IEO2016

Much of the analysis conducted for the IEO2016 was done before the release of the U.S. Environmental Protection Agency's final Clean Power Plan (CPP). For this reason, the IEO2016 Reference case does not include the potential effects of the CPP regulations

in the United States, analysis that shows the potential for significant reductions in U.S. coal consumption and increases in U.S. renewable consumption compared with the Reference case projection.

Energy in 2015: A Year of Plenty Spencer Dale – BP June 8, 2016 BP Statistical Review of World Energy 2015

"Practical Strategies for Emerging Energy Technologies"

Energy growth

8P Statistical Review of World Energy

What's Our Target?

What does "450 ppm(v) CO₂" Mean?

	Ratio compared	d to Dry Air <i>(%</i>)	Molecular Mass	Chemical
Gas	4		- M -	Symbol
	By volume	By weight	(kg/kmol)	
Oxygen	20.9500	23.2	32.00	O ₂
Nitrogen	78.0900	75.47	28.02	N_2
Carbon Dioxide	0.0300	0.046	44.01	CO ₂
Hydrogen	0.0001	~ 0	2.02	H_2
Argon	0.9330	1.28	39.94	Ar
Neon	0.0018	0.0012	20.18	Ne
Helium	0.0005	0.00007	4.00	He
Krypton	0.0001	0.0003	83.80	Kr
Xenon	9 10 ⁻⁶	0.00004	131.29	Xe

Standard assumptions on the chemical composition of Air

0.0300% = 300 ppm(v)

Value July 2016 at Mauna Loa was 404.30ppm(v)

This is the "Science Bit"

(A) Risks from climate change... (B) ... depend on cumulative CO₂ emissions...

The CO₂ Budget – 65% Already Used

The Carbon Conundrum

MIT Technology Review – Mike Orcott

"Busted"

The world appears to be on the >RCP6 720-1000 ppm path

At least the CIA forecast appears to be a candid assessment ©

"Practical Strategies for Emerging Energy Technologies"

COP21 & Supporting INDC's

EIA Energy Related CO₂ Forecast

Figure 36. Energy-related carbon dioxide emissions in six cases. 2000-2040 (million metric tons)

Worldwide CO₂ Emissions (Million metric tonnes)

CO2 Emissions (Million metric tonnes)

2010 2011 2012 2013 2015 2020 2025 2030 2035 2040 2015 2040 (2012-2040) DECD OCD Americas 6502 6558 6343 6467 6478 6569 6620 6675 6769 6887 19.3% 15.9% 0.30% United States 5458 5483 5272 5404 5428 5499 5511 557 577 587 621 647 1.7% 1.5% 0.20% Canada 447 4193 4124 3997 4054 4096 4170 4252 4317 4415 12.1% 10.2% 0.20% OECD Larope 4247 4193 4124 3997 1215 1175 1175 1175 1175 1175 1175 1175 1175 1175 1175 1175 1175 1175 1175 1175 1175 1175 13 552 1.3% 3.3% 3.2% 1.00% 0												Share	Share	Growth
DECD U U U U U U U U DECD Americas 6558 6558 6358 6343 6272 5404 5428 5499 5511 5514 5521 5549 10.2% 12.2% 0.30% Lunied States 5478 548 5433 572 557 577 587 621 647 1.7% 1.2% 0.50% 0.50% Mekico/Chile 498 513 508 501 492 513 533 573 628 600 1.5% 1.6% 1.10% OECD Larope 4247 4193 4124 397 4054 4106 4170 4260 2513 533 531 553 533 533 530 800 2.0% 2.0% 0.00%		2010	2011	2012	2013	2015	2020	2025	2030	2035	2040	2015	2040	(2012-2040)
OECD Americas 6502 6538 6343 6467 6478 6569 6620 6675 6769 6887 19.3% 19.3% 10.3% 10.3% 10.3% 10.3% 10.3% 10.3% 10.3% 10.3% 10.3% 10.3% 10.3% 10.3% 10.3% 10.3% 10.3% 10.3% 10.3% 10.3% 0.30% Canada 547 562 563 561 557 557 577 587 621 640 1.5% 1.6% 1.10% OECD burope 4247 4193 4124 3997 4054 4054 4170 4252 4317 4415 1.21% 10.2% 0.20% OECD burope 2477 423 632 631 475 451 470 476 833 8407 2.460 2.51 7.5% 7.64 836 436 436 431 435 451 476 487 531 1363 318 3850 2.0% 2.0% <th>OECD</th> <th></th>	OECD													
United States 5458 5483 522 5040 5428 5499 5511 5514 5521 5549 16.2% 12.8% 0.20% Canada 547 562 563 561 557 557 557 587 621 647 1.7% 1.5% 0.50% Mexico/Chile 498 513 533 573 567 577 587 621 647 1.7% 1.5% 0.50% OECD Europe 4247 4193 4124 3997 4054 4096 4170 4252 4317 4415 12.1% 10.2% 0.20% OECD Europe 4247 4193 4124 3997 1215 1175 1159 1144 1111 3.6% 2.6% -0.40% South Korea 577 577 587 1378 1334 134 134 0.30% 0.30% Australia/New Zealand 4444 442 436 431 435 451 470 487 513 552 1.3% 38.4% 0.30% Non-O	OECD Americas	6502	6558	6343	6467	6478	6569	6620	6675	6769	6887	19.3%	15.9%	0.30%
Canada 547 562 563 561 557 557 577 587 621 647 1.7% 1.5% 0.50% Mexico/Chile 498 513 508 501 492 513 533 573 628 690 1.5% 1.6% 1.10% OECD Europe 4247 4193 4124 3997 4054 4096 4107 4260 2513 7.0% 5.8% 0.30% Japan 1169 1185 1247 1245 1215 1176 1175 1159 1144 1111 3.6% 2.6% -0.40% South Korea 577 642 639 641 685 734 742 761 803 850 2.0% <th< th=""><th>United States</th><th>5458</th><th>5483</th><th>5272</th><th>5404</th><th>5428</th><th>5499</th><th>5511</th><th>5514</th><th>5521</th><th>5549</th><th>16.2%</th><th>12.8%</th><th>0.20%</th></th<>	United States	5458	5483	5272	5404	5428	5499	5511	5514	5521	5549	16.2%	12.8%	0.20%
Mexico/Chile 498 513 508 501 492 513 533 573 628 600 1.5% 1.6% 1.10% OECD Europe 4247 4193 4124 3997 4054 4066 4170 4225 4317 4415 12.1% 10.2% 0.20% OECD Asia 2190 2272 2312 2335 2361 2175 1159 1144 1111 3.6% 2.6% -0.40% Japan 1169 1185 1247 1245 1215 1176 1175 1159 1144 1111 3.6% 2.6% -0.40% South Korea 577 642 639 641 685 734 742 761 803 850 2.0% 2.0% 0.30% Australia/New Zealand 4444 442 436 431 435 451 470 4837 1385 3850 2.0% 0.30% Non-OECD 1303 1175 1135 </th <th>Canada</th> <th>547</th> <th>562</th> <th>563</th> <th>561</th> <th>557</th> <th>557</th> <th>577</th> <th>587</th> <th>621</th> <th>647</th> <th>1.7%</th> <th>1.5%</th> <th>0.50%</th>	Canada	547	562	563	561	557	557	577	587	621	647	1.7%	1.5%	0.50%
OECD Europe 4247 4193 4124 3997 4054 4096 4170 4252 4317 4415 12.1% 10.2% 0.20% OECD Asia 2190 2270 2322 2317 2335 2361 2388 2407 2460 2513 7.0% 5.8% 0.30% Japan 1169 1185 1247 1245 1215 1176 1175 1159 1144 1111 3.6% 2.6% -0.40% South Korea 577 642 639 641 685 734 742 761 803 850 2.0% 2.0% 0.30% Australia/New Zealand 444 442 436 431 435 451 470 487 513 552 1.3% 1.3% 0.80% Non-OECD 1239 13021 1279 1278 1287 1308 3128 3198 3170 8.4% 7.3% 0.30% Non-OECD 1051 1150 1175 1181 1762 1814 1862 1897 1924 1864 </th <th>Mexico/Chile</th> <th>498</th> <th>513</th> <th>508</th> <th>501</th> <th>492</th> <th>513</th> <th>533</th> <th>573</th> <th>628</th> <th>690</th> <th>1.5%</th> <th>1.6%</th> <th>1.10%</th>	Mexico/Chile	498	513	508	501	492	513	533	573	628	690	1.5%	1.6%	1.10%
OECD Asia 2190 2270 2322 2317 2335 2361 2388 2407 2460 2513 7.0% 5.8% 0.30% Japan 1169 1185 1247 1245 1215 1176 1175 1159 1144 1111 3.6% 2.6% -0.40% South Korea 577 642 639 641 685 734 742 761 803 850 2.0% 2.0% 1.00% 1.00% 1.00% 1.00% 1.00% 0.80% Australia/New Zealand 444 442 436 431 435 451 470 487 513 552 1.3% 1.3% 0.80% Australia/New Zealand 444 442 436 2318 4170 487 13334 1354 13815 38.4% 32.0% 0.30% Non-OECD 777 2845 2938 2922 2832 2914 3038 3128 3198 3170 8.4%	OECD Europe	4247	4193	4124	3997	4054	4096	4170	4252	4317	4415	12.1%	10.2%	0.20%
Japan 1169 1185 1247 1245 1215 1176 1175 1159 1144 1111 3.6% 2.6% -0.40% South Korea 577 642 639 641 685 734 742 761 803 850 2.0% 2.0% 1.00% Australia/New Zealand 444 442 436 431 435 451 470 487 513 552 1.3% 0.80% Non-OECD 1239 13021 1270 1278 12867 13026 1318 1384 3170 8.4% 7.3% 0.80% Non-OECD Vin- 2717 2845 2938 2922 2832 2914 3083 3128 3198 3170 8.4% 7.3% 0.10% Other 1051 1143 1105 1070 1100 1176 1231 1275 1306 3.2% 3.9% 3.70 8.4% 5.3% 4.3% 0.10% Non-OECD 11051 1143 1105 1070 1100 1176 1231	OECD Asia	2190	2270	2322	2317	2335	2361	2388	2407	2460	2513	7.0%	5.8%	0.30%
South Korea 577 642 639 641 685 734 742 761 803 850 2.0% 2.0% 1.00% Australia/New Zealand 444 442 436 431 435 451 470 487 513 552 1.3% 1.3% 0.80% Non-OECD 12939 13021 12790 12781 12867 13026 13178 13334 13547 13815 38.4% 32.0% 0.30% Non-OECD Non-OECD Europe and Eurasia 2717 2845 2938 2922 2832 2914 3038 3128 3198 3170 8.4% 7.3% 0.30% Non-OECD Asia 1051 1150 1143 1105 1070 1100 1176 1231 1275 1306 3.2% 3.0% 0.50% Non-OECD Asia 10051 1175 12195 12615 13201 14456 15505 16386 10782 11051 2.72% 2.56% 1.00% Non-OECD Asia 1024 1663 1778 1804 1932	Japan	1169	1185	1247	1245	1215	1176	1175	1159	1144	1111	3.6%	2.6%	-0.40%
Australia/New Zealand 444 442 436 431 435 451 470 487 513 552 1.3% 1.3% 0.80% Total OECD 12939 13021 12700 12781 12867 13026 13178 13334 13547 13815 38.4% 32.0% 0.30% Non-OECD Non-OECD Non-OECD Non-OECD Non-OECD Non-OECD 1665 1695 1795 1818 1762 1814 1862 1897 1924 1864 5.3% 4.3% 0.10% Other 1051 1150 1143 1105 1070 1100 1176 1231 1275 1306 3.2% 3.0% 0.50% Non-OECD Asia 11005 11785 12195 12615 13201 14456 15505 16386 17482 18682 39.4% 43.2% 1.50% Non-OECD Asia 11005 11785 12195 12615 13201 14456 15505 16386 17482 18682 39.4% 43.2% 1.50% 1.00% Ot	South Korea	577	642	639	641	685	734	742	761	803	850	2.0%	2.0%	1.00%
Total OECD 12939 13021 12790 12781 12867 13026 13178 13334 13547 13815 38.4% 32.0% 0.30% Non-OECD Non-OECD Europe and Eurasia 2717 2845 2938 2922 2832 2914 3038 3128 3198 3170 8.4% 7.3% 0.30% Russia 1665 1695 1795 1818 1762 1814 1862 1897 1924 1864 5.3% 4.3% 0.10% Other 1051 1150 1143 1105 1070 1100 1176 1231 1275 1306 3.2% 3.0% 0.50% Non-OECD Asia 11005 11785 12195 12615 13201 14456 15505 16386 17482 18682 39.4% 43.2% 1.50% India 1624 1663 1778 1804 1932 2143 2394 2693 3161 3732 5.8% 8.6% 2.70% Other 1998 2003 2038 2051 2144 2452	Australia/New Zealand	444	442	436	431	435	451	470	487	513	552	1.3%	1.3%	0.80%
Non-OECD 2717 2845 2938 2922 2832 2914 3038 3128 3198 3170 8.4% 7.3% 0.30% Russia 1665 1695 1795 1818 1762 1814 1862 1897 1924 1864 5.3% 4.3% 0.10% Other 1051 1150 1143 1105 1070 1100 1176 1231 1275 1306 3.2% 3.0% 0.50% Non-OECD Asia 11005 1178 1219 12615 13201 14456 15505 16386 17482 1862 39.4% 43.2% 1.50% India 1624 1663 1778 1804 1932 2143 2394 2693 3161 3732 5.8% 8.6% 2.70% Other 1998 2003 2038 2051 2144 2452 2740 3057 3443 3898 6.4% 9.0% 2.30% Middle East 1732 1828 1894 1949 2090 2399 2608 2887 3	Total OECD	12939	13021	12790	12781	12867	13026	13178	13334	13547	13815	38.4%	32.0%	0.30%
Non-OECD Non-OECD Europe and Eurasia 2717 2845 2938 2922 2832 2914 3038 3128 3198 3170 8.4% 7.3% 0.30% Russia 1665 1695 1795 1818 1762 1814 1862 1897 1924 1864 5.3% 4.3% 0.10% Other 1051 1150 1143 1005 1070 1100 1176 1231 1275 1306 3.2% 3.0% 0.50% Non-OECD Asia 11005 11785 12195 12615 13201 14456 15505 16386 17482 18682 39.4% 43.2% 1.50% India 1624 1663 1778 1804 1932 2143 2394 2693 3161 3732 5.8% 8.6% 2.70% Middle East 1732 1828 1894 1949 2090 2399 2608 2887 3171 3446 6.2% 8.0% 2.20% Africa 1133 1120 1184 1187 1267 1438														
Non-OECD Europe and Eurasia 2717 2845 2938 2922 2832 2914 3038 3128 3198 3170 8.4% 7.3% 0.30% Russia 1665 1695 1795 1818 1762 1814 1862 1897 1924 1864 5.3% 4.3% 0.10% Other 1051 1150 1143 1105 1070 1100 1176 1231 1275 1306 3.2% 3.0% 0.50% Non-OECD Asia 11005 11785 12195 12615 13201 14456 15505 16386 17482 18682 39.4% 43.2% 1.50% India 1624 1663 1778 1804 1932 2143 2394 2693 3161 3732 5.8% 8.6% 2.70% Other 1998 2003 2038 2051 2144 2452 2740 3057 3443 3898 6.4% 9.0% 2.30% Middle East 1732 1828 1894 1949 2090 2399 2608 <td< th=""><th>Non-OECD</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	Non-OECD													
Russia 1665 1695 1795 1818 1762 1814 1862 1897 1924 1864 5.3% 4.3% 0.10% Other 1051 1150 1143 1105 1070 1100 1176 1231 1275 1306 3.2% 3.0% 0.50% Non-OECD Asia 11005 11785 12195 12615 13201 14456 15505 16386 17482 18682 39.4% 43.2% 1.50% China 7383 8119 8378 8760 9125 9861 10371 10636 10878 11051 27.2% 25.6% 1.00% India 1624 1663 1778 1804 1932 2143 2394 2693 3161 3732 5.8% 8.6% 2.70% Other 1998 2003 2038 2051 2144 2452 2740 3057 3443 3898 6.4% 9.0% 2.30% Middle East 1732 1828 1894 1949 2090 2399 2608 2887	Non-OECD Europe and Eurasia	2717	2845	2938	2922	2832	2914	3038	3128	3198	3170	8.4%	7.3%	0.30%
Other 1051 1150 1143 1105 1070 1100 1176 1231 1275 1306 3.2% 3.0% 0.50% Non-OECD Asia 11005 11785 12195 12615 13201 14456 15505 16386 17482 18682 39.4% 43.2% 1.50% China 7383 8119 8378 8760 9125 9861 10371 10636 10878 11051 27.2% 25.6% 1.00% India 1624 1663 1778 1804 1932 2143 2394 2693 3161 3732 5.8% 8.6% 2.70% Other 1998 2003 2038 2051 2144 2452 2740 3057 3443 3898 6.4% 9.0% 2.30% Middle East 1732 1828 1894 1949 2090 2399 2608 2887 3171 3446 6.2% 8.0% 2.20% Africa 1133 1120 1184 1187 1267 1438 1599 1608	Russia	1665	1695	1795	1818	1762	1814	1862	1897	1924	1864	5.3%	4.3%	0.10%
Non-OECD Asia 11005 11785 12195 12615 13201 14456 15505 16386 17482 18682 39.4% 43.2% 1.50% China 7383 8119 8378 8760 9125 9861 10371 10636 10878 11051 27.2% 25.6% 1.00% India 1624 1663 1778 1804 1932 2143 2394 2693 3161 3732 5.8% 8.6% 2.70% Other 1998 2003 2038 2051 2144 2452 2740 3057 3443 3898 6.4% 9.0% 2.30% Middle East 1732 1828 1894 1949 2090 2399 2608 2887 3171 3446 6.2% 8.0% 2.20% Africa 1133 1120 1184 1187 1267 1438 1594 1760 1973 2239 3.8% 5.2% 2.30% Gentral and South America 1215 1242 1271 1279 1282 1398 1509	Other	1051	1150	1143	1105	1070	1100	1176	1231	1275	1306	3.2%	3.0%	0.50%
China7383811983788760912598611037110636108781105127.2%25.6%1.00%India16241663177818041932214323942693316137325.8%8.6%2.70%Other19982003203820512144245227403057344338986.4%9.0%2.30%Middle East17321828189419492090239926082887317134466.2%8.0%2.20%Africa11331120118411871267143815941760197322393.8%5.2%2.30%Central and South America12151242127112791282139815091608172518653.8%4.3%1.40%Brazil4594755014985035495996507047641.5%1.8%1.50%Other755767769782779849910958102111012.3%2.5%1.30%Total World3074131839322713273333583563137432391034109643217100.0%100.0%1.00%	Non-OECD Asia	11005	11785	12195	12615	13201	14456	15505	16386	17482	18682	39.4%	43.2%	1.50%
India 1624 1663 1778 1804 1932 2143 2394 2693 3161 3732 5.8% 8.6% 2.70% Other 1998 2003 2038 2051 2144 2452 2740 3057 3443 3898 6.4% 9.0% 2.30% Middle East 1732 1828 1894 1949 2090 2399 2608 2887 3171 3446 6.2% 8.0% 2.20% Africa 1133 1120 1184 1187 1267 1438 1594 1760 1973 2239 3.8% 5.2% 2.30% Central and South America 1215 1242 1271 1279 1282 1398 1509 1608 1725 1865 3.8% 4.3% 1.40% Brazil 459 475 501 498 503 549 599 650 704 764 1.5% 1.8% 1.50% Other 755 767 769 782 779 849 910 958 1021 <t< th=""><th>China</th><th>7383</th><th>8119</th><th>8378</th><th>8760</th><th>9125</th><th>9861</th><th>10371</th><th>10636</th><th>10878</th><th>11051</th><th>27.2%</th><th>25.6%</th><th>1.00%</th></t<>	China	7383	8119	8378	8760	9125	9861	10371	10636	10878	11051	27.2%	25.6%	1.00%
Other 1998 2003 2038 2051 2144 2452 2740 3057 3443 3898 6.4% 9.0% 2.30% Middle East 1732 1828 1894 1949 2090 2399 2608 2887 3171 3446 6.2% 8.0% 2.20% Africa 1133 1120 1184 1187 1267 1438 1594 1760 1973 2239 3.8% 5.2% 2.30% Central and South America 1215 1242 1271 1279 1282 1398 1509 1608 1725 1865 3.8% 4.3% 1.40% Brazil 459 475 501 498 503 549 599 650 704 764 1.5% 1.8% 1.50% Other 755 767 769 782 779 849 910 958 1021 1101 2.3% 2.5% 1.30% Other 17801 18818 19481 19952 20671 22605 24254 25769 27549	India	1624	1663	1778	1804	1932	2143	2394	2693	3161	3732	5.8%	8.6%	2.70%
Middle East 1732 1828 1894 1949 2090 2399 2608 2887 3171 3446 6.2% 8.0% 2.20% Africa 1133 1120 1184 1187 1267 1438 1594 1760 1973 2239 3.8% 5.2% 2.30% Central and South America 1215 1242 1271 1279 1282 1398 1509 1608 1725 1865 3.8% 4.3% 1.40% Brazil 459 475 501 498 503 549 599 650 704 764 1.5% 1.8% 1.50% Other 755 767 769 782 779 849 910 958 1021 1101 2.3% 2.5% 1.30% Total Non-OECD 17801 18818 19481 19952 20671 22605 24254 25769 27549 29402 61.6% 68.0% 1.50% Total World 30741 31839 32271 3273 33538 35631 37432 39103	Other	1998	2003	2038	2051	2144	2452	2740	3057	3443	3898	6.4%	9.0%	2.30%
Africa 1133 1120 1184 1187 1267 1438 1594 1760 1973 2239 3.8% 5.2% 2.30% Central and South America 1215 1242 1271 1279 1282 1398 1509 1608 1725 1865 3.8% 4.3% 1.40% Brazil 459 475 501 498 503 549 599 650 704 764 1.5% 1.8% 1.50% Other 755 767 769 782 779 849 910 958 1021 1101 2.3% 2.5% 1.30% Total Non-OECD 17801 18818 19481 19952 20671 22605 24254 25769 27549 29402 61.6% 68.0% 1.50% Total World 30741 31839 32271 32733 33538 35631 37432 39103 41096 43217 100.0% 100.0% 1.00%	Middle East	1732	1828	1894	1949	2090	2399	2608	2887	3171	3446	6.2%	8.0%	2.20%
Central and South America 1215 1242 1271 1279 1282 1398 1509 1608 1725 1865 3.8% 4.3% 1.40% Brazil 459 475 501 498 503 549 599 650 704 764 1.5% 1.8% 1.50% Other 755 767 769 782 779 849 910 958 1021 1101 2.3% 2.5% 1.30% Total Non-OECD 17801 18818 19481 19952 20671 22605 24254 25769 27549 29402 61.6% 68.0% 1.50% Total World 30741 31839 32271 32733 33538 35631 37432 39103 41096 43217 100.0% 100.0% 1.00%	Africa	1133	1120	1184	1187	1267	1438	1594	1760	1973	2239	3.8%	5.2%	2.30%
Brazil 459 475 501 498 503 549 599 650 704 764 1.5% 1.8% 1.50% Other 755 767 769 782 779 849 910 958 1021 1101 2.3% 2.5% 1.30% Total Non-OECD 17801 18818 19481 19952 20671 22605 24254 25769 27549 29402 61.6% 68.0% 1.50% Total World 30741 31839 32271 32733 33538 35631 37432 39103 41096 43217 100.0% 100.0% 1.00% 33 5 Ct 43 2 Ct	Central and South America	1215	1242	1271	1279	1282	1398	1509	1608	1725	1865	3.8%	4.3%	1.40%
Other 755 767 769 782 779 849 910 958 1021 1101 2.3% 2.5% 1.30% Total Non-OECD 17801 18818 19481 19952 20671 22605 24254 25769 27549 29402 61.6% 68.0% 1.50% Total World 30741 31839 32271 32733 33538 35631 37432 39103 41096 43217 100.0% 100.0% 1.00% 33 5 Ct 43 2 C t	Brazil	459	475	501	498	503	549	599	650	704	764	1.5%	1.8%	1.50%
Total Non-OECD 17801 18818 19481 19952 20671 22605 24254 25769 27549 29402 61.6% 68.0% 1.50% Total World 30741 31839 32271 32733 33538 35631 37432 39103 41096 43217 100.0% 100.0% 1.00% 33 5 Ct 43 2 C t	Other	755	767	769	782	779	849	910	958	1021	1101	2.3%	2.5%	1.30%
Total World 30741 31839 32271 32733 33538 35631 37432 39103 41096 43217 100.0% 1.00% 33 5 C t 13 2 C t 100.0% 1.00%	Total Non-OECD	17801	18818	19481	19952	20671	22605	24254	25769	27549	29402	61.6%	68.0%	1.50%
Total World 30741 31839 32271 32733 33538 35631 37432 39103 41096 43217 100.0% 100.0% 1.00% 33 5 C t 13 2 C t 100.0% 100.0% 1.00%														
	Total World	30741	31839	32271	32733	33538	35631	37432	39103	41096	43217	100.0%	100.0%	1.00%
33.3 Gt 43.2 Gt	hago					33.5 G	t				43.2 C	it		

Reference Case EIA AEO2016 Forecast

CO2 (Gt)	2010	2011	2015	2020	2025	2030	2035	2036	2037	2038	2039	2040
OECD												
OECD Americas	6.5	6.6	6.5	6.6	6.6	6.7	6.8	6.8	6.8	6.9	6.9	6.9
United States	5.5	5.5	5.4	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
Canada	0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Mexico/Chile	0.5	0.5	0.5	0.5	0.5	0.6	0.6	0.6	0.7	0.7	0.7	0.7
OECD Europe	4.2	4.2	4.1	4.1	4.2	4.3	4.3	4.3	4.4	4.4	4.4	4.4
OECD Asia	6.5	2.3	2.3	2.4	2.4	2.4	2.5	2.5	2.5	2.5	2.5	2.5
Japan	1.2	1.2	1.2	1.2	1.2	1.2	1.1	1.1	1.1	1.1	1.1	1.1
South Korea	0.6	0.6	0.7	0.7	0.7	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Australia/New Zealand	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.6
Total OECD	12.9	13.0	12.9	13.0	13.2	13.3	13.5	13.6	13.7	13.7	13.8	13.8
Non-OECD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Non-OECD Europe and Eurasia	2.7	2.8	2.8	2.9	3.0	3.1	3.2	3.2	3.2	3.2	3.2	3.2
Russia	1.7	1.7	1.8	1.8	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9
Other	1.1	1.2	1.1	1.1	1.2	1.2	1.3	1.3	1.3	1.3	1.3	1.3
Non-OECD Asia	11.0	11.8	13.2	14.5	15.5	16.4	17.5	17.7	17.9	18.2	18.4	18.7
China	7.4	8.1	9.1	9.9	10.4	10.6	10.9	10.9	11.0	11.0	11.0	11.1
India	1.6	1.7	1.9	2.1	2.4	2.7	3.2	3.3	3.4	3.5	3.6	3.7
Other	2.0	2.0	2.1	2.5	2.7	3.1	3.4	3.5	3.6	3.7	3.8	3.9
Middle East	1.7	1.8	2.1	2.4	2.6	2.9	3.2	3.2	3.3	3.3	3.4	3.4
Africa	1.1	1.1	1.3	1.4	1.6	1.8	2.0	2.0	2.1	2.1	2.2	2.2
Central and South America	1.2	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.8	1.8	1.8	1.9
Brazil	0.5	0.5	0.5	0.5	0.6	0.7	0.7	0.7	0.7	0.7	0.8	0.8
Other	0.8	0.8	0.8	0.8	0.9	1.0	1.0	1.0	1.1	1.1	1.1	1.1
Total Non-OECD	17.8	18.8	20.7	22.6	24.3	25.8	27.5	27.9	28.3	28.7	29.0	29.4
Total World	30.7	31.8	33.5	35.6	37.4	39.1	41.1	41.5	41.9	42.4	42.8	43.2
use		1,900.0	2,030.2	2,202.0	2,383.7	2,574.2	2,773.5	2,814.6	2,856.1	2,898.1	2,940.4	2,983.2

A Credible 50% CO2 Reduction Scenario by 2050

"Practical Strategies for Emerging Energy Technologies"

IEA Vision May 2013

"Practical Strategies for Emerging Energy Technologies"

Electric Power Research Institute PRISM Analysis

New & Advanced Technologies Needed

Sierra Club Fact Sheet – November 3, 2015

FIGURE 1: CARBON EMISSIONS IN THE ELECTRIC SECTOR AND ECONOMY-WIDE SINCE 2010

Sierra Club Fact Sheet – November 3, 2015 (Re-scaled)

AEO2016 Early Release – Two Cases May 17, 2016

CO2 emissions are lower in AEO2016 Reference case than AEO2015 Reference Case, even without the Clean Power Plan (CPP)

energy-related carbon dioxide emissions million metric tons

- Key drivers for the lower energy-related CO2 emissions in AEO2016 include:
 - Lower natural gas prices that support higher electricity generation from natural gas with or without the CPP
 - Lower technology costs for wind and solar, combined with extended tax credits and the CPP, and
 - Reduced coal generation as a result of the CPP, which emit the most CO2 per kilowatthour.

"Practical Strategies for Emerging Energy Technologies"

13

The New Reference Case Includes Full Effect of CPP

Key takeaways from the two cases: Electricity

- Implementation of the Clean Power Plan (CPP) using a mass-based approach reduces annual electricity-related carbon dioxide (CO2) emissions to between 1,550 and 1,560 million metric tons (MMT) in the 2030-40 period, substantially below their 2005 and 2015 levels of 2,416 MMT and 1,891 MMT, respectively. Coal's share of total electricity generation, which was 50% in 2005 and 33% in 2015, falls to 21% in 2030 and to 18% in 2040.
- Even without the CPP, electricity-related CO2 emissions remain well below their 2005 level at 1,942 MMT in 2030 and 1,959 MMT in 2040; this outcome reflects both low load growth and generation mix changes driven by the extension of key renewable tax credits, reduced solar photovoltaic (PV) capital costs, and low natural gas prices.

Full CPP Δ to reference plan only 400 MMt

б

 With the mass-based approach, the strong growth in wind and solar generation spurred by tax credits leads to a short-term decline in natural gas-fired generation between 2015 and 2021. However, natural gas generation then grows significantly under a mass-based CPP implementation, increasing by more than 67% from 2021 through 2040, when it is by far the largest generation source.

Sorry But, CPP is Business as Usual!

<u>CO2</u> emissions per dollar of gross domestic product (GDP) decline faster than energy use per dollar of GDP with a shift towards low- and no-carbon fuels

- The economy's energy intensity, carbon intensity, and percapita energy use are projected to decline steadily. In the Reference case, energy use per dollar of GDP declines at an average annual rate of 1.8% over 2015-40, while energy use per capita declines at an average annual rate of 0.3%. With renewables and natural gas providing larger shares of total energy use, CO2 per dollar of GDP declines faster than energy intensity.
- The structure and efficiency of the U.S. economy changes in ways that lower total energy use and energy use per dollar of GDP. The nonindustrial and services sector share of the economy remains near 77% throughout the projection, but there is a shift towards non-energy-intensive industries within manufacturing that is slightly smaller in the absence of the CPP.
- Energy-use-per-capita declines, driven by gains in appliance efficiency, a shift in population from cooler to warmer regions, and an increase in vehicle efficiency standards, combined with modest growth in travel per licensed driver.

14

You know there is a problem when the discussion shifts to CO2 per GDP

EIA May 17, 2016 Early Release Mmt/\$Million GDP

Data table for: GDP long-term forecast, Total, Million US dollars, 2009 – 2060

	2005	2009	2010	2015
China		8,264,462	9,127,849	13,325,589
India		3,259,867	3,622,119	4,751,391
United States		13,263,170	13,595,648	15,423,341
World	47,104,046	54,942,708	57,674,148	68,077,321
Million tonnes CO2	28533	30,158.0	31,544.1	33,508.4
Cummulative				2,032,971
MMt/GDP	0.000606	0.000549	0.000547	0.000492
		ſ	0.9029	0.8999
		-		
US Percent of World GDP		24.1%	23.6%	22.7%

Source: OECD Economic Outlook: Statistics and Projections

- The key factor is the calculated MMt of CO2 per million dollars of GDP, 0.000492 in 2015.
- There was a 10% reduction in this value for both the 2005-2010 and the 2010-2015 periods, based on the data and can be interpreted as an improvement in overall efficiency of use.
- I included the 1900GtCO2 in the 2C/450 ppm already consumed between 1870-2011 as the 2012 staring value.

EIA May 17, 2016 Early Release Mmt/\$Million GDP

Data table for: GDP long-term forecast, Total, Million US dollars, 2009 – 2060

	2020	2025	2030	2035	2040	2041	2045	2050	2055	2060
China	17,709,685	21,987,556	26,307,248	31,117,405	36,477,854		41,497,785	45,730,397	49,722,574	53,827,698
India	6,337,715	8,437,521	11,162,212	14,504,379	18,401,049		22,832,998	27,817,822	33,324,548	39,211,023
United States	17,743,025	20,025,623	22,482,236	24,988,766	27,461,839		29,898,935	32,341,599	34,792,848	37,206,576
World	81,452,490	95,570,319	111,074,203	128,015,627	145,962,170	149,409,817	164,034,207	182,273,171	201,423,865	221,232,567
Million tonnes CO2	36,082.6	38,103.0	39,855.8	41,341.3	42,423.3	42,519.8	42,908.2	42,911.3	42,677.8	42,187.4
Cummulative	2,069,054	2,255,484	2,451,226	2,654,940	2,864,881	2,907,401	3,078,450	3,293,001	3,506,856	3,718,772
MMt/GDP	0.000443	0.0003987	0.0003588	0.0003229	0.0002906	0.0002846	0.0002616	0.0002354	0.0002119	0.0001907
	0.9000	0.9000	0.9000	0.9000	0.9000		0.9000	0.9000	0.9000	0.9000
US Percent of World GDP	21.8%	21.0%	20.2%	19.5%	18.8%		18.2%	17.7%	17.3%	16.8%

Source: OECD Economic Outlook: Statistics and Projections

- The OECD GDP Forecast is shown without modification.
- The same efficiency of use improvements are assumed throughout the forecast period to 2060
- The calculated yearly increment is based on this GDP Forecast data and underlying efficiency of use assumptions.
- This efficiency of use assumptions are not likely to apply uniformly around the world, but that assumption is embedded in the calculation.
- We bust the 2900Gt budget in 2041 and reach 3719Gt by 2060.
- This is equivalent to 550-600 ppm and perhaps 4°C temperature rise.

If 0.90 becomes 0.95:

- We bust the 2900Gt budget in 2038
- Total ytd 2060 is 4272Gt
- Annual release 55Gt 2040; 69Gt 2060

What Can We Do?

- Stop Producing or Produce Less CO₂
 - Fuel Switching
 - -Renewables
 - -Biofuels
 - -Nuclear
 - -Hydro
 - -Waste to Energy
 - End Use Efficiency
 - Combined Heat & Power
 - CAFÉ Standards
 - Demand Response
 - Building Efficiency
 - Storage
 - Smart Grid

– Put the CO2 back

- Carbon Capture & Storage

- Adapt to its effects (live with it)

- Build seawalls
 - Dikes/Locks
- Harden vulnerable assets
 - Relocate/Raise Critical Infrastructure
 - Create Barriers
 - High Capacity Pumping Systems

– Use the CO2

- As a Fuel
- Chemical Feedstock
- Biomass Nutrient
- Carbon(ate) Based Product
- Enhanced Oil Recovery (EOR)

McKinsey CO₂ Cost Curve V1.0

Global cost curve for greenhouse gas abatement measures beyond 'business as usual'; greenhouse gases measured in GtCO2e1

¹GtCO₂e = gigaton of carbon dioxide equivalent; "business as usual" based on emissions growth driven mainly by increasing demand for energy and transport around the world and by tropical deforestation.

 $^{2}tCO_{2}e = ton of carbon dioxide equivalent.$

³Measures costing more than €40 a ton were not the focus of this study.

 4 Atmospheric concentration of all greenhouse gases recalculated into CO₂ equivalents; ppm = parts per million.

⁵Marginal cost of avoiding emissions of 1 ton of CO₂ equivalents in each abatement demand scenario.

McKinsey Global GHG Cost Curve V2.1

Note: The curve presents an estimate of the maximum potential of all technical GHG abatement measures below €80 per tCO₂e if each lever was pursued aggressively. It is not a forecast of what role different abatement measures and technologies will play. Source: Global GHG Abatement Cost Curve v2.1

<u>base</u>

"Practical Strategies for Emerging Energy Technologies"

CO₂ Pricing

Source: On Climate Change Policy

Carbon pricing is spreading

- Prices are far too low to price emissions efficiently
- The vast majority of priced emissions about 90% of the total are priced below $14/tCO_2$
- Higher carbon prices are invariably for small volumes, and are found in Europe, British Columbia and Alberta
- The environmental damage caused by emissions as estimated the US EPA
- Carbon prices are thus too low even compared with a likely underestimate of the cost of emissions
- Taxes are too low and caps are too loose to price carbon adequately

200

2020

- Consequently efficient abatement is not happening.

Substantial Costs for CO₂ Mitigation

"Practical Strategies for Emerging Energy Technologies"

Electric Power Generation

No Carbon Sources

Fuel Switching

U.S. Coal Plant Retirements

THIS CHART SHOWS THE MEGAWATTS OF COAL CAPACITY RETIRED TO DATE PLUS PROJECTED RETIREMENT DATES FOR UNITS ANNOUNCED OR PROPOSED RETIREMENTS INCLUDED IN A UTILITY'S RESOURCE PLANS. SOURCES: SIERRA CLUB, EIA.

"Practical Strategies for Emerging Energy Technologies"

U.S. Power Plant Addition 2013-2014 (6 mos.)

"Practical Strategies for Emerging Energy Technologies"

U.S. Power Generation Shift 2015-2016

- The USA is the world's largest producer of nuclear power
 - More than 30% of worldwide nuclear generation of electricity.
 - 99 units operable (98.7 GWe)
 - Five under construction.
- Following a 30-year period in which few new reactors were built, it is expected that six new units may come on line by 2020
- Lower gas prices (and the ability to permit a natural gas-fueled plant without abatement) since 2009 have put the economic viability of some existing reactors and proposed new projects in doubt.

TYPE OF PLANT (2015-2016)	ADDITIONS (MW)	RETIREMENTS (MW)	NET (MW)
BATTERIES	10.50	-	10.50
CONVENTIONAL HYDROELECTRIC	637.00	323.00	314.00
CONVENTIONAL STEAM COAL	380.00	16,961.50	(16,581.50)
GEOTHERMAL	3.70	-	3.70
LANDFILL GAS	56.40	22.40	34.00
MUNICIPAL SOLID WASTE	96.00	-	96.00
NATURAL GAS FIRED COMBINED CYCLE	14,584.00	139.00	14,445.00
NATURAL GAS FIRED COMBUSTION TURBINE	2,225.20	1,709.00	516.20
NUCLEAR	1,269.90	-	1,269.90
OFFSHORE WIND TURBINE	30.00	-	30.00
ONSHORE WIND TURBINE	17,103.10	25.30	17,077.80
OTHER NATURAL GAS	1,058.20	874.20	184.00
OTHER WASTE BIOMASS	61.60	1.20	60.40
PETROLEUM LIQUIDS	56.70	1,086.80	(1,030.10)
SOLAR PHOTOVOLTAIC	8,472.60		8,472.60
SOLAR THERMAL WITH ENERGY STORAGE	131.00	-	131.00
SOLAR THERMAL WITHOUT ENERGY STORAGE	773.40	-	773.40
WOOD/WOOD WASTE BIOMASS	223.70	33.50	190.20
ALL OTHER	146.00	- 0	146.00
NET TOTAL 2015	18,965.00	14,938.20	4,026.80
NET TOTAL 2016	28,354.00	6,237.70	22,116.30
NET TOTAL 2015-2016	47,319.00	21,175.90	26,143.10

These are nameplate ratings...be mindful of load factor.

U.S. Electric Utility Fuel Cost – 2001 to 2014

Source: ACCCE, Trisko (2014)

"The Big Picture: Next-Gen Nuclear"

- Compliments of Power magazine April 2014
- 72 mostly advanced nuclear reactions under construction
- A total of 68GW (12% of installed base)
- China represents 40% of the total
- France will cap nuclear capacity at the current 63.2GW, forcing closures w/capacity additions
 - Currently at 75% share of generation
 - Goal is 50% by 2025

Westinghouse AP1000[®] plant under construction in Sanmen, China

base

Natural Gas Combined Cycle - NGCC

Simples Cycle Gas Turbine Section 40% LHV Efficiency 1100 lb-CO₂/MWh Combined Cycle "Adder" 60% LHV Efficiency 800 lb-CO2/MWh

High Efficiency, Low Emissions Coal (HELE)

Figure 8: Projected capacity of coal-fired power generation to 2050

Max. unit

capacity

(MWe)

1 100³

460

<1 000

(possible)

335

<500

Capacity

factor

(%)

80

80

70

CCS energy

penalty

(%-points)

7 to 10

(post-

combustion

and oxy-

fuel)

7

Table 3: Performance of HELE coal-fired power technologies

Emissions Fue Plani co, NO. SO, PM type type (g/kWh) (mg/Nm²) <50 to 100 <20 to 100 PC (USC) <10 740 (by SCR) (by FGD) <50 to 100 <50 880 to 900 <200 CFBC (in situ) Coal <20 to 100 <50 to 100 PC 670 <10 (700°C) (A-USC) (by SCR) (by FGD)

IGCC^{1,2}

IGFC¹

670 to 740

500 to 550

<30

<30

<20

<20

<1

<1

- U.S. consumption of coal totaled 18 quadrillion Btu in 2013, a 4-percent increase from 2012
 Electric power sector consumption accounted for 01
- Electric power sector consumption accounted for 91 percent of total consumption in 2013
- The price of coal averaged \$2.52 per million Btu in the United States in 2013, a 3-percent decrease from 2012
- Prices ranged from \$1.44 per million Btu in Nebraska to \$4.90 per million Btu in Alaska.

Source: IEA Technology Roadmap High Efficiency Low Emissions Coal-fired Power Generation

Coal-fired PowerGen Options - 2DS

Figure 7: Electricity generation from different coal-fired power technologies in the 2DS

Note: Carbon capture is integrated with HELE coal-fired units to minimise coal consumption and CO, abatement cost.

Source: IEA Technology Roadmap

High Efficiency Low Emissions Coal-fired Power Generation

1000 gCO2/kWh = 2204 lb/MWh

"Practical Strategies for Emerging Energy Technologies"

Note: Refers to capacity in 2010 unless specified otherwise. Definitions of subcritical, supercritical (SC) and ultra-supercritical (USC) technology are described in Box 3. Source: Plats, 2011.

Table 1: CO₂ intensity factors and fuel consumption values

	CO₂ intensity factor (Efficiency [LHV, net])	Coal consumption ¹
A-USC (700°C ²) IGCC (1 500°C ³)	670-740 g CO ₂ /kWh (45-50%)	290-320 g/kWh
Ultra-supercritical	740-800 g CO CO ₂ /kWh (up to 45%)	320-340 g/kWh
Supercritical	800-880 g CO CO ₂ /kWh (up to 45%)	340-380 g/kWh
Subcritical	≥880 g CO CO ₂ /kWh (up to 45%)	≥380 g/kWh

1 For coal with heating value 25 MJ/kg; 2 Steam temperature; 3 Turbine Inlet temperature.

Note: The CO₂ intensity factor is the amount of carbon dioxide emitted per unit of electricity generated from a plant. For example, a CO₂ intensity factor of 800g CO₂/kWh means that the coal-fired unit emits 800g of CO₂ for each kWh of electricity generated. Source: VBG, 2011.

Coal-to-Gas Shift – nature.com

Figure 3 | Contributions of different factors to the decline in US CO₂ emissions 2007-2009 and 2009-2011 and 2011-2013. Between 2007 and 2009, decreases in the volume of goods and services consumed during the economic recession (red) was the primary contributor to the nearly 10% drop in emissions. But between 2009 and 2011, consumption (consump.) volume rebounded, population grew and the energy intensity of output increased, driving up emissions by 1.3% against modest decreases in the carbon intensity of the fuel mix and shifts in production structure and consumption patterns. Between 2011 and 2013, increases in population and consumption volume again pushed emissions upward, but overall emissions decreased by 2.1% due to further changes in production (prod.) structure, consumption patterns, decreasing use of coal and decreases in energy intensity of output. Not shown here, emissions increased by 1.7% between 2012 and 2013, driven primarily by increases in consumption volume.

"The new EPA Clean Power Plan is largely built on fuel switching and renewables deployment"

"Practical Strategies for Emerging Energy Technologies" http://www.nature.com/ncomms/2015/150721/ncomms8714/full/ncomms8714.html

Gas Bridge to Renewables Already Built

- For the U.S. to reach its climate goals, the deadline for constructing the last gas-fired power plant is coming up shortly — if not already past
- Gas has a significant near-term role in reducing dependence on coal-fired power and helping the transition to intermittent renewable sources. But, to reduce greenhouse gas emissions to a target of 80% below 1990 levels by 2050, the nation must ultimately eliminate almost all use of fossil fuels, including natural gas
- "A power plant on the drawing boards today could still be operational in 2050 and well beyond. With each passing year, the likely life span of new natural gas power plants moves further beyond 2050 ".
- The U.S. EPA's Clean Power Plan might do more harm than good because substituting gas-fired power for coal capacity is one of the options for complying with the rules requirements. Rather, lawmakers should consider setting a final date beyond which no new natural gas power plants can be approved, Weissman advised.
- Almost 237 GW of gas-fired generation capacity was added between 2000 and 2010, making up 81% of all the generation capacity added in that decade. This momentum could increasingly complicate efforts to cut back on gas use.
- "As more people and institutions invest in natural gas, political pressure to sustain its use grows. It will become more and more difficult to achieve long-range greenhouse gas reduction goals". "Natural gas cannot play a long-term role in creating our desired carbon-constrained future, as its benefits are not enough to support our carbon reduction goals"

Steve Weissman – Senior Policy Advisor, Center for Sustainable Energy/Source: Sarah Smith SNL Thursday, March 31, 2016

Well-to-Wheels Comparison Electric vs. Gasoline

FIGURE ES.1 WTW Petroleum Use and GHG Emissions for CD Operation of Gasoline PHEVs and BEVs Compared with Baseline Gasoline ICEVs and Regular Gasoline HEVs base ______

Methane Leaks & Regulation

- On May 12, 2016, the U.S. Environmental Protection Agency (EPA) announced a Strategy to:
 - Reduce Methane Emissions to cut methane emissions from the large and complex oil and natural gas industry
 - achieve its goal of cutting methane emissions from the oil and gas sector by 40 to 45 percent from 2012 levels by 2025.
- Methane has a global warming potential more than 25 times greater than that of carbon dioxide
- Methane is the second most prevalent greenhouse gas emitted by human activities in the United States,
- 1/3 come from oil production and the production, processing, transmission and storage of natural gas.
- Reducing methane emissions is an essential part of an overall strategy to address climate change.
- The final NSPS is expected to:
 - Reduce 510,000 short tons of methane in 2025, the equivalent of reducing 11 million metric tons of carbon dioxide.
 - 11,000,000 metric tonnes = 0.011 Gt = 0.28% of U.S. emissions of 4Gt

11000000	metric tonne
0.011000000000000001	gigatonne
Convert	

More information from the unit converter

How many metric tonne in 1 gigatonne? The answer is 100000000. We assume you are converting between **metric tonne** and **gigatonne**. You can view more details on each measurement unit: <u>metric tonne</u> or <u>gigatonne</u> The SI base unit for <u>mass</u> is the kilogram. 1 kilogram is equal to 0.001 metric tonne, or 1.0E-12 gigatonne. Note that rounding errors may occur, so always check the results. Use this page to learn how to convert between tonnes and gigatonnes. Type in your own numbers in the form to convert the units!

"Essential Part"....Really?

How about CO2 from Natural Gas Power Plants at 11.4Gt in 2040?

EPA CO₂ Regulations

Units of Measure

Units of Mass

- Ton (short) = 2000 lb
- tonne (metric) = 1000 kg = 2205 lb
- Mt = mmt = million metric tonnes
- Gigatonne (Gt) = 1000 Mt

Units of Cost

- Plant Cost (\$/kW)
- LCOE Levelized Cost of Electricity (mils/kWh)

Utilization Rate

- Capacity Factor % = kWh produced/kWh rated
 - 85% Pulverized Coal
 - 75% NGCC
 - 20-30% Wind

base

"Practical Strategies for Emerging Energy Technologies"

Measures of Efficiency

- Power Plant Heat Rate
 Btu/kWh
- Power Plant Efficiency
 - 3412 Btu/kWh/Plant Heat Rate

- LHV & HHV Fuel Heat Content

- The gas company sells HHV
- Utilities normally use HHV
- Gas Turbine Industry advertises/uses LLV
- Natural Gas
 - LHV = 23,860 Btu/lb
 - HHV = 21,501 Btu/lb
- The effect is a 10% difference in claimed efficiency
- Net Output vs. Gross Output

Each fuel has:

- -An energy content Btu/lb
- -A carbon content lb-CO₂/mmBtu
- Each Power Plant (type) has
- efficiency or "heat rate" Btu/kWh

Fuel Carbon Factors – lb-CO₂/mmBtu

227.38 205.46 209.68 211.60 206.21 203.51 203.64 201.57 202.79 204.80		Subbituminous Subbituminous Subbituminous Subbituminous Subbituminous Subbituminous Subbituminous Subbituminous	Alaska Colorado Iowa Missouri Montana New Mexico Utah Washington Wyoming	214.00 212.72 200.79 201.31 213.42 208.84 207.09 208.69 212.71	208.84
227.38 205.46 209.68 211.60 206.21 203.51 203.64 201.57 202.79 204.80		Subbituminous Subbituminous Subbituminous Subbituminous Subbituminous Subbituminous Subbituminous	Colorado Iowa Missouri Montana New Mexico Utah Washington Wyoming	212.72 200.79 201.31 213.42 208.84 207.09 208.69 212.71	208.84
205.46 209.68 211.60 206.21 203.51 203.64 201.57 202.79 204.80		Subbituminous Subbituminous Subbituminous Subbituminous Subbituminous Subbituminous	lowa Missouri Montana New Mexico Utah Washington Wyoming	200.79 201.31 213.42 208.84 207.09 208.69 212.71	208.84
205.46 209.68 211.60 206.21 203.51 203.64 201.57 202.79 204.80		Subbituminous Subbituminous Subbituminous Subbituminous Subbituminous Lianite	Missouri Montana New Mexico Utah Washington Wyoming	201.31 213.42 208.84 207.09 208.69 212.71	208.84
209.68 211.60 206.21 203.51 203.64 201.57 202.79 204.80		Subbituminous Subbituminous Subbituminous Subbituminous Subbituminous	Montana New Mexico Utah Washington Wyoming	213.42 208.84 207.09 208.69 212.71	208.84
211.60 206.21 203.51 203.64 201.57 202.79 204.80		Subbituminous Subbituminous Subbituminous Subbituminous	New Mexico Utah Washington Wyoming	208.84 207.09 208.69 212.71	208.84
206.21 203.51 203.64 201.57 202.79 204.80		Subbituminous Subbituminous Subbituminous Lianite	Utah Washington Wyoming	207.09 208.69 212.71	208.84
203.51 203.64 201.57 202.79 204.80		Subbituminous Subbituminous Lianite	Washington Wyoming	208.69 212.71	208.84
203.64 201.57 202.79 204.80		Subbituminous Lignite	Wyoming	212.71	208.84
201.57 202.79 204.80		Lignite	Arkennen		
202.79 204.80		Lianite	Arkonooo		
204.80			Alkansas	213.54	
		Lignite	California	216 31	
203.23		Lignite	Louisiana	213 54	
210.16		Lignite	Montana	220.59	
201.31		Lignite	North Dakota	218 76	
209.62		Lignite	South Dakota	216.07	
205.71		Lignite	Texas	213.54	
202.84		Lignito	Washington	213.54	
205.93		Lignite	Wyoming	211.00	215 61
205.72		Lignite	wyonning	215.59	215.01
204.79		Natural Cas		116.29	116 29
204.08		Natural Gas		110.56	110.30
206.23					\smile
203.62		Source: Energy I	nformation Administration, Qu	Jarteriy Coal Report, Jan	
207.10		Mar. 1994, DOE-EIA-	0121(94/Q1) (Washington, D.	.C, August 1994), pp. 1-8.)	
206.48					
204.39	205.44				
	203.72 204.79 204.08 206.23 203.62 207.10 206.48 204.39	203.72 204.79 204.08 206.23 203.62 207.10 206.48 204.39 205.44	200.72 204.79 204.08 206.23 203.62 207.10 206.48 204.39 205.44 Natural Gas Source: Energy I Mar. 1994, DOE-EIA-	2003.72 204.79 204.08 206.23 203.62 207.10 206.48 204.39 205.44 Natural Gas Source: Energy Information Administration, Qu Mar. 1994, DOE-EIA-0121(94/Q1) (Washington, D This is where "Natura	200.72 204.79 204.79 116.38 206.23 Source: Energy Information Administration, Quarterly Coal Report, Jan 207.10 Natural Gas 206.48 205.44 204.39 205.44

comes from

"Practical Strategies for Emerging Energy Technologies"

base

EPA NSPS Output Ratings 2014 – lb-CO₂/MWh

Fuel	N		кероп						
FUEL	IN	$r_1 + r_2 + r_3 + r_4 + r_4 + r_5 $				Bitumin			
Carbon Factor - Ib-CO2/mmBtu	116.4	116.4	116.4		203.3	203.3	203.3	203.3	
Power Plant									
- Type	SC	NGCC	NGCC		PC	SCPC	USCPC	USCPC	
- Heat Rate (HHV) - Btu/kWh	9452	6313	6848		9276	8721	8412	7580	
- Efficiency - HHV%	36.1%	54.0%	49.8%		36.8%	39.1%	40.6%	45.0%	
- Efficiency - LHV%	40.1%	60.0%	55.3%		40.8%	43.4%	45.0%	50.0%	
- Thermal Input - mmBtu	850	850	850		850	850	850	850	
- Rating - MW @850 mmBtu/hr	89.93	134.64	124.12		91.63	97.47	101.05	112.14	
Emissions - Ib-CO2/MWh									
- Unabated	1100.0	734.7	797.0		1886.0	1773.2	1710.3	1541.2	
- Applicable Threshold	1100	1000	1000		1000	1000	1000	1000	
CCS % required to meet threshold	0.0%	0.0%	0.0%		47.0%	43.6%	41.5%	35.1%	
SPS = New Source Performa	ance Stand	lards							
			lł	$b - CO_2 / M$	4Wh = lb -	$-CO_2 / Bt$	u / kWh / /100	00	
Natural Gas HHV	21,501		$lb - CO_2 / MWh = \frac{116.4 \times 6848}{1000} = 797$						
	23,800	HHV efficiency $-3412Btu/kWh/$ $-3412/$							
bue baseline Carbon Factors		/ Heat Rate / 0							

EPA NSPS Output Ratings 2014 – lb-CO₂/MWh

Fuel		Subbitum	inous Coal			Lig	nite	
Carbon Factor - Ib-CO2/mmBtu	208.8	208.8	208.8	208.8	215.6	215.6	215.6	215.6
Power Plant								
- Туре	PC	SCPC	USCPC	USCPC	 PC	SCPC	USCPC	USCPC
- Heat Rate (HHV) - Btu/kWh	9276	8721	8412	7580	9276	8721	8412	7580
- Efficiency - HHV%	36.8%	39.1%	40.6%	45.0%	 36.8%	39.1%	40.6%	45.0%
- Efficiency - LHV%	40.8%	43.4%	45.0%	50.0%	 40.8%	43.4%	45.0%	50.0%
- Thermal Input - mmBtu	850	850	850	850	850	850	850	850
- Rating - MW@850 mmBtu/hr	91.63	97.47	101.05	112.14	91.63	97.47	101.05	112.14
Emissions - Ib-CO2/MWh								
- Unabated	1937.2	1821.3	1756.7	1583.0	2000.0	1880.3	1813.7	1634.3
- Applicable Threshold	1000	1000	1000	1000	1000	1000	1000	1000
CCS % required to meet threshold	48.4%	45.1%	43.1%	36.8%	50.0%	46.8%	44.9%	38.8%

"The War on Coal"- EPA NSPS 2014

Case Gross Power Output - KWe 10 S80,400 12 Wes 13 No 14 Yes Yes Auxilliary Power Requirements - KWe 30,410 112,830 9,620 37,430 Report Net Power Output - KWe 30,410 112,830 9,620 37,430 Net Plant HHV Efficiency - % 39,30% 28,40% 50,20% 473,570 Net Plant HHV Heat Rate - BluKWh 8,687 12,002 6,798 7,968 Total Plant Cost - \$KW 2452 3683 725 1509 Total Ownight Cost - \$KW 2452 3091 3683 725 1996 LOOE - mils/KWh 80.95 137,28 505,59 86.58 1996 CO2 Emissions - Ib/MWh 1768 244 804 94 94 S/MMBtu 2.94 2.94 6.13 6.13 6.13 Load Factor 85% 85% 85% 85% 85% KW Nominal Met 550,000 550,000 550,000 550,000 560,000 560,000 560,000 560,000 <		Supercri	tical PC	NG	CC
Gross Power Output - KWe 580,400 662,800 564,700 511,000 Auxilliary Power Requirements - KWe 30,410 112,830 9,620 37,430 Report Net Power Output - KWe 39,30% 112,830 9,620 37,430 Net Plant HHV Efficiency - % 39,30% 28,40% 473,570 42,80% Net Plant HHV Efficiency - % 39,30% 12,002 6,798 7,988 Total Plant Cost - \$KW 1995 3583 725 1509 Total Overnight Cost - \$KW 2452 500,20% 42,80% 7,988 LOOE - mis/KWh 80.95 137,28 967 1996 LOOE - mis/KWh 80.95 137,28 6613 6,13 CO2 Emissions - Ib/MWh 1768 244 804 94 SiMMBtu 2.94 6,13 6,13 6,13 Load Factor 85% 85% 85% 550,000 550,000 KW Nominal Net 550,000 550,000 550,000 550,000 550,000 Cost Premium	Case CO2 Capture	11 No	12 Yes	13 No	14 Yes
Auxilliary Power Requirements - kWe 30,410 112,830 9,620 37,430 Report Net Power Output - kWe 549,990 549,970 555,080 473,570 Net Plant HHV Efficiency - % 39,30% 28,40% 50,20% 42,80% Total Plant Cost - \$kW 1995 3583 725 1509 Total Venight Cost - \$kW 2452 4331 725 1996 LODE - mis/kWh 80.95 137.28 9579 86.58 CO2 Emissions - Ib/MWh 1768 244 804 94 S/MMBtu 2.94 6.13 6.13 6.13 Load Factor 85% 85% 85% 85% KW Nominal Gross 590,000 550,000 550,000 560,000 Total as Spent Capital \$1,529,834,783 \$2,753,292,297 \$26,223,607 \$1,092,280,160 Cost Premium vs. NGCC Case 13 1,003,611,175 2,227,068,690 - 560,056,553 MBtuyear 35,57,871 49,151,791 27,839,849 32,631,350 KWhyear 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 <t< th=""><th>Gross Power Output - kWe</th><th>580,400</th><th>662,800</th><th>564,700</th><th>511,000</th></t<>	Gross Power Output - kWe	580,400	662,800	564,700	511,000
Report Net Power Output - kWe 549,990 549,970 555,080 473,570 Net Plant HHV Efficiency - % Net Plant HHV Heat Rate - Blu/kWh 39,30% 28,40% 50,20% 42,80% Total Plant Cost - \$kW 995 3583 725 1509 Total Overnight Cost - \$kW 2452 439 981 1422 Total Overnight Cost - \$kW 2782 5006 987 1842 LODE - mis/kWh 80.95 137,28 991 1842 LODE - mis/kWh 80.95 137,28 613 613 Load Factor 85% 85% 85% 85% KW Nominal Gross 580,000 550,000 550,000 550,000 Total as Spent Capital Cost Premium vs. NGCC Case 13 \$1,529,834,783 \$2,753,292,297 \$526,223,607 \$1,092,280,160 KWhyear MMBituyear \$1,529,834,783 \$2,753,292,297 \$526,223,607 \$1,092,280,160 Cost Premium vs. NGCC Case 13 \$1,003,611,175 \$2,227,088,690 - 560,056,553 KWhyear MMBituyear \$1,64,593,061 \$144,506,28	Auxilliary Power Requirements - kWe	30,410	112,830	9,620	37,430
Net Plant HHV Efficiency - % Net Plant HHV Heat Rate - Btu/kWh 39.30% 8,687 28.40% 50.20% 6,798 42.80% 7,968 Total Plant Cost - \$kW 1995 3583 725 1509 Total Plant Cost - \$kW 2452 4391 891 1842 Total as Spent Cost - \$kW 2452 5959 18658 86.58 CO2 Emissions - Ib/MWh 1768 244 804 94 S/MMBtu 2.94 6.13 6.13 6.13 Load Factor 85% 85% 85% 85% KW Nominal Gross 580.411 662.836 559.532 593.471 550,000 550,000 550,000 550,000 550,000 KW Nominal Net 550,000 550,000 550,000 560,000 Cost Premium vs. NGCC Case 13 1,003,611,175 2,227,068,690 - 596,056,553 MMBtu/year 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 Load Factor S104,593,061 S144,506,264 S170,658,277 5200,030,178 </th <th>Report Net Power Output - kWe</th> <th>549,990</th> <th>549,970</th> <th>555,080</th> <th>473,570</th>	Report Net Power Output - kWe	549,990	549,970	555,080	473,570
Total Plant Cost - \$/kW 1995 3583 725 1509 Total Overnight Cost - \$/kW 2452 4391 961 1842 Total as Spent Cost - \$/kW 2782 137.28 957 1842 LOD E - mis/kWh 80.95 137.28 957 86.58 CO2 Emissions - Ib/MWh 1768 244 804 94 S/MMBtu 2.94 6.13 6.13 6.13 Load Factor 85% 85% 85% 85% KW Nominal Gross 580,411 662,836 559,532 593,471 Stogoo 550,000 550,000 550,000 550,000 550,000 Total as Spent Capital \$1,529,834,783 \$2,753,292,297 \$526,223,607 \$1,092,280,160 Cost Premium vs. NGCC Case 13 1,003,611,175 2,227,068,690 - 566,056,553 MMBtu/year 35,575,871 49,95,300,000 4,995,300,000 - 520,300,001 KWh/year S104,593,061 \$144,506,264 \$170,658,277 \$200,030,178	Net Plant HHV Efficiency - % Net Plant HHV Heat Rate - Btu/kWh	39.30% 8,687	28.40% < 12,002	50.20% 6,798	42.80% 7,968
Total Overnight Cost - S/kW 2452 4391 1842 Total as Spent Cost - S/kW 2782 5006 967 1842 LOOE - mils/kWh 80.95 137.28 967 1842 CO2 Emissions - Ib/MWh 1768 244 804 94 S/MMBtu 2.94 6.13 6.13 6.13 Load Factor 85% 85% 85% 85% KW Nominal Gross 580,411 662,836 559,532 593,471 550,000 KW Nominal Net 550,000 550,000 550,000 550,000 Total as Spent Capital Cost 1 \$1,529,834,783 \$2,753,292,297 \$526,223,607 \$1,092,280,160 Cost Premium vs. NGCC Case 13 1,003,611,175 2,227,068,690 - 566,056,553 MMBtu/year 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 MMBtu/year 5104,593,061 \$144,506,264 \$170,658,277 \$200,030,178 Fuel Cost vs. NGCC Case 13 \$104,593,061 \$144,506,264 \$170,658,277	Total Plant Cost - \$/kW	1995	3583	725	1509
Total ass.Spent Cost - \$/kW 2782 5006 557 1996 CO2 Emissions - Ib/MWh 80.95 137.28 59.59 86.58 CO2 Emissions - Ib/MWh 1768 244 804 94 S/MMBtu 2.94 6.13 6.13 6.13 Load Factor 85% 85% 85% 85% KW Nominal Gross 590,000 550,000 550,000 550,000 Total as Spent Capital Cost Premium vs. NGCC Case 13 \$1,529,834,783 \$2,753,292,297 \$526,223,607 \$1,092,280,160 Cost Premium vs. NGCC Case 13 \$1,003,611,175 2,227,068,690 - \$560,000 \$560,000 MMBtu/year 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 KWh/year 4,095,300,000 \$14,506,264 \$170,658,277 \$200,030,178 Fuel Cost vs. NGCC Case 13 (\$66,065,216) (\$26,152,012) - \$29,371,901 LOOE \$331,514,535 \$562,202,784 \$244,038,927 \$26,475,1074 Fuel% 31.6% 25.7% 69,9% \$6,4% \$60.00 per tonne	Total Overnight Cost - \$/kW	2452	4391	\$ 891	1842
1000 B0 001 001 001 001 001 001 001 001	Total as Spent Cost - \$/kW	2782	5006	957	1986
COC MARKIN COC MARKIN COC C	L COE - mils/kWh	80.95	137.28	59.59	86.58
CO2 Emissions - Ib/MWh 1768 244 804 94 \$/MMBtu 2.94 6.13 6.13 6.13 Load Factor 85% 85% 85% 85% 85% kW Nominal Gross 580,411 662,836 559,532 593,471 550,000 kW Nominal Net 550,000 550,000 550,000 550,000 Total as Spent Capital Cost Premium vs. NGCC Case 13 \$1,529,834,783 \$2,753,292,297 \$526,223,607 \$1,092,280,160 kWh/year MMBtu/year 4,095,300,000 4,095,300,000 4,095,300,000 - \$66,056,553 kWh/year MMBtu/year 10,03,611,175 2,227,068,690 - \$66,056,553 kWh/year MMBtu/year 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 kWh/year MMBtu/year \$104,593,061 \$144,506,264 \$170,658,277 \$200,030,178 Fuel Cost vs. NGCC Case 13 (\$66,065,216) (\$28,152,012) - \$29,371,091 LOOE Fuel% 31,6% 25,7% 564,4% 590,438 \$9,021		00.00	101.20		00.00
S/MMBtu 2.94 2.94 6.13 6.13 Load Factor 85% 85% 85% 85% 85% kW Nominal Gross 580,411 662,836 559,532 593,471 550,000 kW Nominal Net 550,000 550,000 550,000 550,000 Total as Spent Capital Cost Premium vs. NGCC Case 13 \$1,529,834,783 \$2,27,53,292,297 \$526,223,607 \$1,092,280,160 KWh/year MMBtu/year 4,095,300,000 27,839,849 32,631,350 LOCDE Fuel Cost vs. NGCC Case 13 \$104,535 \$562,202,784 \$244,038,927 \$2354,571,074 56,4% <tr< th=""><th>CO2 Emissions - Ib/MWh</th><th>1768</th><th>244</th><th>804</th><th>94</th></tr<>	CO2 Emissions - Ib/MWh	1768	244	804	94
\$/MMBtu 2.94 2.94 6.13 6.13 Load Factor 85% 85% 85% 85% 85% kW Nominal Gross 580,411 662,836 559,532 593,471 550,000 kW Nominal Net 550,000 550,000 550,000 550,000 Total as Spent Capital Cost Premium vs. NGCC Case 13 \$1,529,834,783 \$2,753,292,297 \$526,223,607 \$1,092,280,160 KWh/year MMBtu/year 4,095,300,000 4,095,300,000 - 566,056,553 kWh/year MMBtu/year 575,871 49,151,791 27,839,849 32,631,350 LOCE \$104,593,061 \$144,506,264 \$170,658,277 \$200,030,178 Fuel Cost vs. NGCC Case 13 (\$66,065,216) (\$26,152,012) - \$29,371,901 LCOE \$331,514,535 \$562,202,784 \$244,038,927 \$354,571,074 \$60.00 per tonne \$197,051 \$27,194 \$90,438 \$9,021 \$002 Cost vs. NGCC Case 13 \$106,612 \$63,244) - (\$81,417)				\frown	
Load Factor 85% 85% 85% 85% kW Nominal Gross 580,411 662,836 559,532 593,471 550,000 kW Nominal Net 550,000 550,000 550,000 550,000 Total as Spent Capital Cost Premium vs. NGCC Case 13 \$1,529,834,783 \$2,753,292,297 \$526,223,607 \$1,092,280,160 KWh/year MMBtu/year 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 32,631,350	\$/MMBtu	2.94	2.94	6.13	6.13
kW Nominal Gross 580,411 662,836 559,532 593,471 550,000 kW Nominal Net 550,000 550,000 550,000 550,000 550,000 Total as Spent Capital Cost Premium vs. NGCC Case 13 \$1,529,834,783 1,003,611,175 \$2,227,068,690 - \$1,092,280,160 566,056,553 kWh/year MMBtu/year 4,095,300,000 35,575,871 4,095,300,000 4,095,300,000 4,095,300,000 27,839,849 4,095,300,000 32,631,350 Annual Fuel Fuel Cost vs. NGCC Case 13 \$104,593,061 (\$66,065,216) \$144,506,264 (\$26,152,012) \$170,658,277 - \$200,030,178 \$29,371,901 LCOE Fuel% \$331,514,535 31.6% \$562,202,784 25.7% \$244,038,927 66.4% \$354,571,074 56.4% \$60.00 per tonne CO2 Cost vs. NGCC Case 13 \$197,051 \$106,612 \$27,194 (\$63,244) \$90,438 - \$90,21 (\$81,417)	Load Factor	85%	85%	85%	85%
550,000 KW Nominal Net 550,000 550,000 550,000 550,000 Total as Spent Capital Cost Premium vs. NGCC Case 13 \$1,529,834,783 \$2,753,292,297 \$526,223,607 \$1,092,280,160 KWh/year MMBtu/year 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 32,631,350 Annual Fuel Fuel Cost vs. NGCC Case 13 \$104,593,061 \$144,506,264 \$170,658,277 \$200,030,178 \$29,371,901 LCOE Fuel% \$331,514,535 \$562,202,784 \$244,038,927 \$354,571,074 \$29,371,901 \$60.00 per tonne \$197,051 \$27,194 \$90,438 \$9,021 CO2 Cost vs. NGCC Case 13 \$106,612 \$63,244) - \$81,417)	kW Nominal Gross	580.411	662.836	559.532	593.471
Total as Spent Capital Cost Premium vs. NGCC Case 13 \$1,529,834,783 1,003,611,175 \$2,753,292,297 2,227,068,690 \$526,223,607 - \$1,092,280,160 566,056,553 kWh/year MMBtu/year 4,095,300,000 35,575,871 4,095,300,000 49,151,791 4,095,300,000 27,839,849 4,095,300,000 32,631,350 Annual Fuel Fuel Cost vs. NGCC Case 13 \$104,593,061 (\$66,065,216) \$144,506,264 (\$26,152,012) \$170,658,277 - \$200,030,178 \$29,371,901 LCOE Fuel% \$331,514,535 31.6% \$562,202,784 25.7% \$244,038,927 69.9% \$354,571,074 56.4% \$60.00 per tonne CO2 Cost vs. NGCC Case 13 \$197,051 \$106,612 \$27,194 (\$63,244) \$90,438 - \$9,021 (\$81,417)	550,000 kW Nominal Net	550,000	550,000	550,000	550,000
Total as Spent Capital Cost Premium vs. NGCC Case 13 \$1,529,834,783 1,003,611,175 \$2,753,292,297 2,227,068,690 \$526,223,607 - \$1,092,280,160 566,056,553 kWh/year MMBtu/year 4,095,300,000 35,575,871 4,095,300,000 49,151,791 4,095,300,000 27,839,849 4,095,300,000 32,631,350 Annual Fuel Fuel Cost vs. NGCC Case 13 \$104,593,061 (\$66,065,216) \$144,506,264 (\$26,152,012) \$170,658,277 - \$200,030,178 \$29,371,901 LCOE Fuel% \$331,514,535 31.6% \$562,202,784 25.7% \$244,038,927 (\$99,9%) \$354,571,074 56.4% \$60.00 per tonne CO2 Cost vs. NGCC Case 13 \$197,051 \$106,612 \$27,194 (\$63,244) \$90,438 - \$9,021 (\$81,417)	,,	,	,	,	,
Cost Premium vs. NGCC Case 13 1,003,611,175 2,227,068,690 - 566,056,553 kWh/year 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 32,631,350 Annual Fuel \$104,593,061 \$144,506,264 \$170,658,277 \$200,030,178 \$29,371,901 Fuel Cost vs. NGCC Case 13 \$104,593,061 \$144,506,264 \$170,658,277 \$200,030,178 LCOE \$331,514,535 \$562,202,784 \$244,038,927 \$354,571,074 Fuel% 31.6% 25.7% \$244,038,927 \$354,571,074 \$60.00 per tonne \$197,051 \$27,194 \$90,438 \$9,021 CO2 Cost vs. NGCC Case 13 \$106,612 \$63,244) - \$(\$81,417)	Total as Spent Capital	\$1,529,834,783	\$2,753,292,297	\$526,223,607	\$1,092,280,160
kWh/year 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 27,839,849 32,631,350 Annual Fuel \$104,593,061 \$144,506,264 \$170,658,277 \$200,030,178 \$29,371,901 Fuel Cost vs. NGCC Case 13 \$104,593,061 \$144,506,264 \$170,658,277 \$200,030,178 \$29,371,901 LCOE \$331,514,535 \$562,202,784 \$244,038,927 \$354,571,074 \$6.4% \$60.00 per tonne \$197,051 \$27,194 \$90,438 \$9,021 CO2 Cost vs. NGCC Case 13 \$106,612 \$27,194 \$90,438 \$9,021 \$106,612 \$83,244) \$90,438 \$9,021 \$106,612 \$863,244) \$10,612 \$81,417)	Cost Premium vs. NGCC Case 13	1,003,611,175	2,227,068,690	-	566,056,553
kWh/year 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 4,095,300,000 MMBtu/year 35,575,871 49,151,791 27,839,849 32,631,350 Annual Fuel \$104,593,061 \$144,506,264 \$170,658,277 \$200,030,178 Fuel Cost vs. NGCC Case 13 (\$66,065,216) (\$26,152,012) - \$29,371,901 LCOE \$331,514,535 \$562,202,784 \$244,038,927 \$354,571,074 Fuel% 31.6% 25.7% 69.9% 56.4% \$60.00 per tonne \$197,051 \$27,194 \$90,438 \$9,021 CO2 Cost vs. NGCC Case 13 \$106,612 (\$63,244) - (\$81,417)					
MMBtu/year 35,575,871 49,151,791 27,839,849 32,631,350 Annual Fuel Fuel Cost vs. NGCC Case 13 \$104,593,061 (\$66,065,216) \$144,506,264 (\$26,152,012) \$170,658,277 - \$200,030,178 \$29,371,901 LCOE Fuel% \$331,514,535 31.6% \$562,202,784 25.7% \$244,038,927 69.9% \$3354,571,074 56.4% \$60.00 per tonne CO2 Cost vs. NGCC Case 13 \$197,051 \$106,612 \$27,194 (\$63,244) \$90,438 - \$9,021 (\$81,417)	kWh/year	4,095,300,000	4,095,300,000	4,095,300,000	4,095,300,000
Annual Fuel Fuel Cost vs. NGCC Case 13 \$104,593,061 (\$66,065,216) \$144,506,264 (\$26,152,012) \$170,658,277 - \$200,030,178 \$29,371,901 LCOE Fuel% \$331,514,535 31.6% \$562,202,784 25.7% \$244,038,927 69.9% \$354,571,074 56.4% \$60.00 per tonne CO2 Cost vs. NGCC Case 13 \$197,051 \$106,612 \$27,194 (\$63,244) \$90,438 - \$9,021 (\$81,417)	MMBtu/year	35,575,871	49,151,791	27,839,849	32,631,350
LCOE Fuel% \$331,514,535 31.6% \$562,202,784 25.7% \$244,038,927 69.9% \$354,571,074 56.4% \$60.00 per tonne CO2 Cost vs. NGCC Case 13 \$197,051 \$106,612 \$27,194 (\$63,244) \$90,438 - \$9,021 (\$81,417)	Annual Fuel Fuel Cost vs. NGCC Case 13	\$104,593,061 (\$66,065,216)	\$144,506,264 (\$26,152,012)	\$170,658,277 -	\$200,030,178 \$29,371,901
\$60.00 per tonne \$197,051 \$27,194 \$90,438 \$9,021 CO2 Cost vs. NGCC Case 13 \$106,612 (\$63,244) - (\$81,417)	LOOE Fuel%	\$331,514,535 31.6%	\$562,202,784 25.7%	\$244,038,927 69.9%	\$354,571,074 56.4%
CO2 Cost vs. NGCC Case 13 \$106,612 (\$63,244) – (\$81,417)	\$60.00 per tonne	\$197 051	\$27 194	\$90 438	\$9 021
	CO2 Cost vs. NGCC Case 13	\$106.612	(\$63,244)	-	(\$81,417)
		0100,012	(000,211)	_	(\$01,111)
tonnes-CO2/year 3,284 453 1,507 150	tonnes-CO2/year	3,284	453	1,507	150

SCPC vs. NGCC First Cost \$/kW is ~5x LCOE is 2.3x Efficiency is ~1/2 w/Natural Gas at \$6.13

<u>base</u>

EPA Output Ratings 2015 – lb-CO₂/MWh

			Baseline Report							
Fuel		Natural Gas	Корон			Bitumino	us Coal			
Carbon Factor - Ib-CO2/mmBtu	116.4	116.4	116.4		203.3	203.3	203.3	203.3		
Power Plant										
- Туре	SC	NGCC	NGCC		PC	SCPC	USCPC	USCPC		
- Heat Rate (HHV) - Btu/kWh	9885	6602	7162		8795	8268	7975	7187		
- Efficiency - HHV%	34.5%	51.7%	47.6%		38.8%	41.3%	42.8%	47.5%		
- Efficiency - LHV%	38.3%	57.3%	52.9%		43.1%	45.8%	47.5%	52.7%		
- Thermal Input - mmBtu	850	850	850		850	850	850	850		
- Rating - MW @850 mmBtu/hr	85.99	128.74	118.68		96.65	102.80	106.58	118.28		
Emissions - Ib-CO2/MWh - Unabated	1150.4	768.4	833.5		1788	1681	1622	1461		
- Applicable Threshold		/					- 1			
- Interim	1150	832	832		1534	1534	1534	1534		
- Final	1150	771	771		1305	1305	1305	1305		
CCS % required to meet final threshold	0.04%	0.00%	7.50%		27.02%	22.37%	19.52%	10.69%		
		Do you notice a theme here???								

"Practical Strategies for Emerging Energy Technologies"

base

EPA Output Ratings 2015 – lb-CO₂/MWh

Fuel		Subbitumi	nous Coal				Ligr	nite	
Carbon Factor - Ib-CO2/mmBtu	208.8	208.8	208.8	208.8		215.6	215.6	215.6	215.6
Power Plant									
- Туре	PC	SCPC	USCPC	USCPC		PC	SCPC	USCPC	USCPC
- Heat Rate (HHV) - Btu/kWh	8795	8268	7975	7187		8795	8268	7975	7187
- Efficiency - HHV%	38.8%	41.3%	42.8%	47.5%	•	38.8%	41.3%	42.8%	47.5%
- Efficiency - LHV%	43.1%	45.8%	47.5%	52.7%		43.1%	45.8%	47.5%	52.7%
- Thermal Input - mmBtu	850	850	850	850		850	850	850	850
- Rating - MW @850 mmBtu/hr	96.65	102.80	106.58	118.28	-	96.65	102.80	106.58	118.28
Emissions - Ib-CO2/MWh									
- Unabated	1836.7	1726.8	1665.6	1500.9		1896.2	1782.7	1719.6	1549.5
- Applicable Threshold									
- Interim	1534	1534	1534	1534		1534	1534	1534	1534
- Final	1305	1305	1305	1305		1305	1305	1305	1305
CCS % required to meet final threshold	28.95%	24.43%	21.65%	13.05%		31.18%	26.80%	24.11%	15.78%

EPA Output Ratings 2015 – lb-CO₂/MWh

Fuel		Subbitumi	nous Coal				Ligr	nite	
Carbon Factor - Ib-CO2/mmBtu	208.8	208.8	208.8	208.8		215.6	215.6	215.6	215.6
Power Plant									
- Туре	PC	SCPC	USCPC	USCPC		PC	SCPC	USCPC	USCPC
- Heat Rate (HHV) - Btu/kWh	8795	8268	7975	7187		8795	8268	7975	7187
- Efficiency - HHV%	38.8%	41.3%	42.8%	47.5%	•	38.8%	41.3%	42.8%	47.5%
- Efficiency - LHV%	43.1%	45.8%	47.5%	52.7%		43.1%	45.8%	47.5%	52.7%
- Thermal Input - mmBtu	850	850	850	850		850	850	850	850
- Rating - MW @850 mmBtu/hr	96.65	102.80	106.58	118.28	-	96.65	102.80	106.58	118.28
Emissions - Ib-CO2/MWh									
- Unabated	1836.7	1726.8	1665.6	1500.9		1896.2	1782.7	1719.6	1549.5
- Applicable Threshold									
- Interim	1534	1534	1534	1534		1534	1534	1534	1534
- Final	1305	1305	1305	1305		1305	1305	1305	1305
CCS % required to meet final threshold	28.95%	24.43%	21.65%	13.05%		31.18%	26.80%	24.11%	15.78%

"The (New) War on Coal"- EPA NSPS 2015

	Supercritical PC		NGCC	
Case	11	12	13	14
CO2 Capture	No	Yes	No	Yes
Gross Power Output - kWe	580,400	662,800	564,700	511,000
Auxilliary Power Requirements - kWe	30,410	112,830	9,620	37,430
Report Net Power Output - kWe	549,990	549,970	555,080	473,570
Net Plant HHV Efficiency - %	39.30%	28.40%	50.20%	42.80%
Net Plant HHV Heat Rate - Btu/kWh	8,687	12,002	6,798	7,968
Total Plant Cost - \$/kW	1995	3583	725	1509
Total Overnight Cost - \$/kW	2452	4391	891	1842
Total as Spent Cost - \$/kW	2782	5006	957	1986
LCOE - mils/kWh	80.95	137.28	59.59	86.58
CO2 Emissions - Ib/MWh	1768	244	804	94
\$/MMBtu	2.94	2.94	6.13	6.13
Load Factor	85%	85%	85%	85%
kW Nominal Gross	580,411	662,836	559,532	593,471
550,000 kW Nominal Net	550,000	550,000	550,000	550,000
Total as Spent Capital	\$1,529,834,783	\$2,753,292,297	\$526,223,607	\$1,092,280,16
Cost Premium vs. NGCC Case 13	1,003,611,175	2,227,068,690	-	566,056,553
kWh/vear	4.095.300.000	4.095.300.000	4.095.300.000	4.095.300.00
MMBtu/year	35,575,871	49,151,791	27,839,849	32,631,350
Annual Fuel	\$104,593,061	\$144,506,264	\$170,658,277	\$200,030,17
Fuel Cost vs. NGCC Case 13	(\$66,065,216)	(\$26,152,012)	-	\$29,371,901
LCOE	\$331,514,535	\$562,202,784	\$244,038,927	\$354,571,074
Fuel%	31.6%	25.7%	69.9%	56.4%
\$70.00 per tonne	\$229,892	\$31,726	\$105,511	\$10,524
CO2 Cost vs. NGCC Case 13	\$124,381	(\$73,785)	-	(\$94,987)
	0.004	450	1 507	150

SCPC vs. NGCC First Cost \$/kW is ~3x LCOE is 1.35x Efficiency is ~3/4 w/Natural Gas at \$6.13

CCS is totally eliminated as a viable option

Power Engineering

Plant Type	Plant Cost (2012\$)/kW		
	Without CCS	With CCS	
Single Advanced Pulverized Coal	\$3,246	\$5,227	
Dual Advanced Pulverized Coal	\$2,934	\$4,724	
Single IGCC	\$4,400	\$6,599	"It's still 5X
Advanced Combined Cycle	\$1,023	\$2,095	

"Practical Strategies for Emerging Energy Technologies"

No....

...and that does not even consider that the non-PowerGen CO2 sources will face much greater challenges to achieve targets than PowerGen

Pete's Pet Peaves

- Put a Value on CO₂
 - My favorite "CO₂ Waste Disposal Fee"
 - Get the 'politico's out of the process
- Drive CCS for all Power Plants at 300 lb-CO₂/MWh
 - Forces capture for all types of Power Plants
 - Incents NGCC to design "Capture Ready
 - Uses the lower cost of natural gas to offset the added cost of CCS
 - Actually get on the "learning curve" and the trajectory to 2°C/450PPM
 - Supports all clean motor vehicle applications
- Accelerate CCS selection & pre-permitting process for "solutions"
 - Capture processes
 - Pipelines
 - Storage sites

Put a price on CO₂ and a value on Miami!

- Eliminate distorting Renewable Portfolio Standards & Production Tax Credits

"Practical Strategies for Emerging Energy Technologies"

Make CCS & Nuclear "OK, i.e., Green"

Appendix

AEO2014 Cost & Performance New Generating Tech

Technology	Online Year ¹	Size (MW)	Lead time (years)	Base Overnight Cost in 2013 (2012 \$/kW)	Project Contingency Factor ²	Technological Optimism Factor ³	Total Overnight Cost in 2013 [~] (2012 \$/kW)	Variable O&M (2012 \$/MWh)	Fixed O&M (2012\$/kW-yi	Heatrate ⁶ in 2013 ·.)(Btu/kWh)	nth-of-a-kind Heatrate (Btu/kWh)
Scrubbed Coal New	2017	1300	4	2,734	1.07	1.00	2,925	4.47	31.18	8,800	8,740
Integrated Coal-Gasification Comb Cycle (IGCC)	2017	1200	4	3,525	1.07	1.00	3,771	7.22	51.39	8,700	7,450
IGCC with carbon sequestration	2017	520	4	5,958	1.07	1.03	6,567	8.45	72.84	10,700	8,307
Conv Gas/Oil Comb Cycle	2016	620	3	871	1.05	1.00	915	3.60	13.17	7,050	6,800
Adv Gas/Oil Comb Cycle (CC)	2016	400	3	945	1.08	1.00	1,021	3.27	15.37	6,430	6,333
Adv CC with carbon sequestration	2017	340	3	1,856	1.08	1.04	2,084	6.78	31.79	7,525	7,493
Conv Comb Turbine ⁸	2015	85	2	924	1.05	1.00	971	15.45	7.34	10,817	10,450
Adv Comb Turbine	2015	210	2	641	1.05	1.00	673	10.37	7.04	9,750	8,550
Fuel Cells	2016	10	3	6,099	1.05	1.10	7,044	42.99	0.00	9,500	6,960
Adv Nuclear	2019	2234	6	4,763	1.10	1.05	5,501	2.14	93.28	10,464	10,464
Distributed Generation - Base	2016	2	3	1,414	1.05	1.00	1,485	7.76	17.45	9,027	8,900
Distributed Generation - Peak	2015	1	2	1,698	1.05	1.00	1,783	7.76	17.45	10,029	9,880
Biomass	2017	50	4	3,590	1.07	1.02	3,919	5.26	105.64	13,500	13,500
Geothermal ^{7,9}	2016	50	4	2,375	1.05	1.00	2,494	0.00	112.92	9,716	9,716
Municipal Solid Waste	2014	50	3	7,751	1.07	1.00	8,294	8.75	392.81	18,000	18,000
Conventional Hydropower ⁹	2017	500	4	2,213	1.10	1.00	2,435	2.65	14.83	9,716	9,716
Wind	2014	100	3	2,061	1.07	1.00	2,205	0.00	39.55	9,716	9,716
Wind Offshore	2017	400	4	4,503	1.10	1.25	6,192	0.00	74.00	9,716	9,716
Solar Thermal ⁷	2016	100	3	4,715	1.07	1.00	5,045	0.00	67.26	9,716	9,716
Photovoltaic ^{7,10}	2015	150	2	3,394	1.05	1.00	3,564	0.00	24.69	9,716	9,716

AEO 2014 Early Release

Nominal Power Plant Comparisons

	Integrated Gacification Combined Cycle						Pulverized Coal Boller				NGCC	
	0	EE	Ci	oP	3h	ell	PC Suboritioal		PC Superoritioal		Advanced F Class	
	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Cace 9	Case 10	Case 11	Case 12	Cace 18	Case 14
CO ₂ Capture	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes
Groce Power Output (kW,)	770,350	744,960	742,510	693,840	748,020	693,555	583,315	679,923	580,260	663,445	570,200	520,090
Auxiliary Power Requirement (kW _e)	130,100	189,285	119,140	175,600	112,170	176,420	32,870	130,310	30,110	117,450	9,840	38,200
Net Power Output (kW.)	640,250	555,675	623,370	518,240	635,850	517,135	550,445	549,613	550,150	545,995	560,360	481,890
Coal Flowrate (lb/hr)	489,634	500,379	463,889	477,855	452,620	473,176	437,699	646,589	411,282	586,627	N/A	N/A
Natural Gas Flowrate (Ib/hr)	N/A	N/A	N/A	N/A	NA	NA	N/A	N/A	N/A	N/A	165,182	165,182
HHV Thermal Input (kW _p)	1,674,044	1,710,780	1,586,023	1,633,771	1,547,493	1,617,772	1,496,479	2,210,668	1,406,161	2,005,660	1,103,363	1,103,363
Net Plant HHV Efficiency (%)	38.2%	32.5%	39.3%	31.7%	41.1%	32.0%	36.8%	24.9%	39.1%	27.2%	50.8%	43.7%
Net Plant HHV Heat Rate (Btu/kW-hr)	8,922	10,505	8,681	10,757	8,304	10,674	9,276	13,724	8,721	12,534	6,719	7,813
Raw Water Ucage, gpm	4,003	4,579	3,757	4,135	3,792	4,563	6,212	12,187	5,441	10,444	2,511	3,901
Total Plant Cost (\$ x 1,000)	1,160,919	1,328,209	1,080,166	1,259,883	1,255,810	1,379,524	852,612	1,591,277	866,391	1,567,073	310,710	564,628
Total Plant Cost (\$/kW)	1,813	2,390	1,733	2,431	1,977	2,668	1,549	2,895	1,575	2,870	554	1,172
LCOE (mills/kWh)1	78.0	102.9	75.3	105.7	80.5	110.4	64.0	118.8	63.3	114.8	68.4	97.4
CO ₂ Emissions (ib/hr)	1,123,781	114,476	1,078,144	131,328	1,054,221	103,041	1,038,110	152,975	975,370	138,681	446,339	44,634
CO, Emissions (tons/year) @ CF1	3,937,728	401,124	3,777,815	460,175	3,693,990	361,056	3,864,884	569,524	3,631,301	516,310	1,661,720	166,172
CO ₂ Emissions (tonnes/year) @ CF ¹	3,572,267	363,896	3,427,196	417,466	3,351,151	327,546	3,506,185	516,667	3,294,280	468,392	1,507,496	150,750
CO ₂ Emissions (Ib/MMBtu)	197	19.6	199	23.6	200	18.7	203	20.3	203	20.3	119	11.9
CO ₂ Emissions (Ib/MWh) ²	1,459	154	1,452	189	1,409	149	1,780	225	1,681	209	783	85.8
CO ₂ Emissions (Ib/MWh) ³	1,755	206	1,730	253	1,658	199	1,886	278	1,773	254	797	93

¹ Capacity factor is 80% for IOCC cases and 85% for PC and NOCC cases

² Value Is based on gross output

^a Value is based on net output

Note magnitude of Auxiliary Power

Cost and Performance Baseline for

Fossil Energy Plants

DOE/NETL-2007/1281

U.S. GHG Gas Emissions & Sinks – CO₂

			-		-	-		_
Gas/Source	1990	2005		2009	2010	2011	2012	2013
CO ₂	5,123.7	6,134.0		5,500.6	5,704.5	5,568.9	5,358.3	5,505.2
Fossil Fuel Combustion	4,740.7	5,747.7		5,197.1	5,367.1	5,231.3	5,026.0	5,157.7
Electricity Generation	1,820.8	2,400.9		2,145.7	2,258.4	2,157.7	2,022.2	2,039.8
Transportation	1,493.8	1,887.8		1,720.3	1,732.0	1,711.5	1,700.8	1,718.4
Industrial	842.5	827.8		727.7	775.7	774.1	784.2	817.3
Residential	338.3	357.8		336.4	334.7	327.2	283.1	329.6
Commercial	217.4	223.5		223.5	220.2	221.0	197.1	220.7
U.S. Territories	27.9	49.9		43.5	46.2	39.8	38.6	32.0
Non-Energy Use of Fuels	117.7	138.9		106.0	114.6	108.4	104.9	119.8
Iron and Steel Production &								
Metallurgical Coke Production	99.8	66.7		43.0	55.7	60.0	54.3	52.3
Natural Gas Systems	37.6	30.0		32.2	32.3	35.6	34.8	37.8
Cement Production	33.3	45.9		29.4	31.3	32.0	35.1	36.1
Petrochemical Production	21.6	28.1		23.7	27.4	26.4	26.5	26.5
Lime Production	11.7	14.6		11.4	13.4	14.0	13.7	14.1
Ammonia Production	13.0	9.2		8.5	9.2	9.3	9.4	10.2
Incineration of Waste	8.0	12.5		11.3	11.0	10.5	10.4	10.1
Petroleum Systems	4.4	4.9		4.7	4.2	4.5	5.1	6.0
Liming of Agricultural Soils	4.7	4.3		3.7	4.8	3.9	5.8	5.9
Urea Consumption for Non-								
Agricultural Purposes	3.8	3.7		3.4	4.7	4.0	4.4	4.7

<u>base</u>

EPA GHG Inventory 1990-2013 Table ES-2 (page 1)

U.S. GHG Gas Emissions & Sinks – CO₂

Other Process Uses of Carbonates	4.9	6.3	7.6	9.6	9.3	8.0	4.4
Urea Fertilization	2.4	3.5	3.6	3.8	4.1	4.2	4.0
Aluminum Production	6.8	4.1	3.0	2.7	3.3	3.4	3.3
Soda Ash Production and							
Consumption	2.7	2.9	2.5	2.6	2.6	2.7	2.7
Ferroalloy Production	2.2	1.4	1.5	1.7	1.7	1.9	1.8
Titanium Dioxide Production	1.2	1.8	1.6	1.8	1.7	1.5	1.6
Zinc Production	0.6	1.0	0.9	1.2	1.3	1.5	1.4
Phosphoric Acid Production	1.6	1.4	1.0	1.1	1.2	1.1	1.2
Glass Production	1.5	1.9	1.0	1.5	1.3	1.2	1.2
Carbon Dioxide Consumption	1.5	1.4	1.8	1.2	0.8	0.8	0.9
Peatlands Remaining Peatlands	1.1	1.1	1.0	1.0	0.9	0.8	0.8
Lead Production	0.5	0.6	0.5	0.5	0.5	0.5	0.5
Silicon Carbide Production and							
Consumption	0.4	0.2	0.1	0.2	0.2	0.2	0.2
Magnesium Production and							
Processing	+	+	+	+	+	+	+
Land Use, Land-Use Change, and							
Forestry (Sink) ^a	(775.8)	(911.9)	(870.9)	(871.6)	(881.0)	(880.4)	(881.7)
Wood Biomass and Ethanol							
Consumption ^b	219.4	22 9 .8	250.5	265.1	268.1	267.7	283.3
International Bunker Fuels ^c	103.5	113.1	106.4	117.0	111.7	105.8	99.8

EPA GHG Inventory 1990-2013 Table ES-2 (page 2)

"Practical Strategies for Emerging Energy Technologies"

base

U.S. GHG Gas Emissions & Sinks – CH4 Methane

CH4	745.5	707.8	709.5	667.2	660.9	647.6	636.3	
Enteric Fermentation	164.2	168.9	172.7	171.1	168.7	166.3	164.5	
Natural Gas Systems	179.1	176.3	168.0	159.6	159.3	154.4	157.4	
Landfills	186.2	165.5	158.1	121.8	121.3	115.3	114.6	
Coal Mining	96.5	64.1	79.9	82.3	71.2	66.5	64.6	
Manure Management	37.2	56.3	59.7	60.9	61.4	63.7	61.4	
Petroleum Systems	31.5	23.5	21.5	21.3	22.0	23.3	25.2	
Wastewater Treatment	15.7	15.9	15.6	15.5	15.3	15.2	15.0	
Rice Cultivation	9.2	8.9	9.4	11.1	8.5	9.3	8.3	
Stationary Combustion	8.5	7.4	7.4	7.1	7.1	6.6	8.0	
Abandoned Underground Coal	_							
Mines	7.2	6.6	6.4	6.6	6.4	6.2	6.2	
Forest Fires	2.5	8.3	5.8	4.7	14.6	15.7	5.8	
Mobile Combustion	5.6	3.0	2.3	2.3	2.3	2.2	2.1	
Composting	0.4	1.9	1.9	1.8	1.9	1.9	2.0	
Iron and Steel Production &	_							
Metallurgical Coke Production	1.1	0.9	0.4	0.6	0.7	0.7	0.7	
Field Burning of Agricultural								
Residues	0.3	0.2	0.3	0.3	0.3	0.3	0.3	
Petrochemical Production	0.2	0.1	+	0.1	+	0.1	0.1	
Ferroalloy Production	+	+	+	+	+	+	+	
Silicon Carbide Production and	-		-	Т	Т		Т	
Destlands Demaining Destlands		T T		T	т 1	- -	т 1	
Peanands Remaining Peanands	+	- T		- -	т 1	- -	т 1	
Incineration of Waste	+ 0.2	- -	+	T	T 0 1	- -	T	
International Bunker Fuels	0.2	0.1	0.1	0.1	0.1	0.1	0.1	
ase	EPA GHG Inventory 1990-2013 Table ES-2 (page 3)							

U.S. GHG Gas Emissions & Sinks – N₂O

N ₂ O	329.9	355.9	356	.1 360.1	371.9	365.6	355.2
Agricultural Soil Management	224.0	243.6	264	.1 264.3	265.8	266.0	263.7
Stationary Combustion	11.9	20.2	20	.4 22.2	21.3	21.4	22.9
Mobile Combustion	41.2	38.1	24	.6 23.7	22.5	20.2	18.4
Manure Management	13.8	16.4	17	.0 17.1	17.3	17.3	17.3
Nitric Acid Production	12.1	11.3	9	.6 11.5	10.9	10.5	10.7
Wastewater Treatment	3.4	4.3	4	.6 4.7	4.8	4.9	4.9
N ₂ O from Product Uses	4.2	4.2	4	.2 4.2	4.2	4.2	4.2
Adipic Acid Production	15.2	7.1	2	.7 4.2	10.2	5.5	4.0
Forest Fires	1.7	5.5	3	.8 3.1	9.6	10.3	3.8
Settlement Soils	1.4	2.3	2	.2 2.4	2.5	2.5	2.4
Composting	0.3	1.7	1	.7 1.6	1.7	1.7	1.8
Forest Soils	0.1	0.5	0	.5 0.5	0.5	0.5	0.5
Incineration of Waste	0.5	0.4	0	.3 0.3	0.3	0.3	0.3
Semiconductor Manufacture	+	0.1	0	.1 0.1	0.2	0.2	0.2
Field Burning of Agricultural							
Residues	0.1	0.1	0	.1 0.1	0.1	0.1	0.1
Peatlands Remaining Peatlands	+	+		+ +	+	+	+
International Bunker Fuels ^b	0.9	1.0	0	.9 1.0	1.0	0.9	0.9

base.

EPA GHG Inventory 1990-2013 Table ES-2 (page 4)

U.S. GHG Gas Emissions & Sinks – HFC's+

HFCs	46.6	131.4	142.9	152.6	157.4	159.2	163.0
Substitution of Ozone Depleting							
Substances ^d	0.3	111.1	136.0	144.4	148.4	153.5	158.6
HCFC-22 Production	46.1	20.0	6.8	8.0	8.8	5.5	4.1
Semiconductor Manufacture	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Magnesium Production and							
Processing	0.0	0.0	+	+	+	+	0.1
PFCs	24.3	6.6	3.9	4.4	6.9	6.0	5.8
Aluminum Production	21.5	3.4	1.9	1.9	3.5	2.9	3.0
Semiconductor Manufacture	2.8	3.2	2.0	2.6	3.4	3.0	2.9
SF6	31.1	14.0	9.3	9.5	10.0	7.7	6.9
Electrical Transmission and							
Distribution	25.4	10.6	7.3	7.0	6.8	5.7	5.1
Magnesium Production and							
Processing	5.2	2.7	1.6	2.1	2.8	1.6	1.4
Semiconductor Manufacture	0.5	0.7	0.3	0.4	0.4	0.4	0.4
NF ₃	+	0.5	0.4	0.5	0.7	0.6	0.6
Semiconductor Manufacture	+	0.5	0.4	0.5	0.7	0.6	0.6
Total Emissions	6,301.1	7,350.2	6,722.7	6,898.8	6,776.6	6,545.1	6,673.0
Total Sinks ^a	(775.8)	(911.9)	(870.9)	(871.6)	(881.0)	(880.4)	(881.7)
Net Emissions (Sources and Sinks)	5,525.2	6,438.3	5,851.9	6,027.2	5,895.6	5,664.7	5,791.2

EPA GHG Inventory 1990-2013 Table ES-2 (page 5)